Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Android devices. Show all posts

Why You Should Clear Your Android Browser’s Cache and Cookies



The web browsers of your Android devices, whether it's Google Chrome, Mozilla Firefox, or Samsung Internet, stores a variety of files, images, and data from the websites you visit. While this data can help load sites faster and keep you logged in, it also accumulates a lot of unnecessary information. This data buildup can potentially pose privacy risks.

Over time, your browser’s cookies and cache collect a lot of junk files. Some of this data comes from sites you’ve visited only once, while others track your browsing habits to serve targeted ads. For example, you might see frequent ads for items you viewed recently. Clearing your cache regularly helps eliminate this unnecessary data, reducing the risk of unknown data trackers lurking in your browser.

Though clearing your cache means you’ll have to log back into your favourite websites, it’s a small inconvenience compared to the benefit of protecting your privacy and freeing up storage space on your phone.

How to Clear Cookies and Cache in Google Chrome

To clear cookies and cache in Google Chrome on your Android device, tap the More button (three vertical dots) in the top right corner. Go to History and then Delete browsing data. Alternatively, you can navigate through Chrome’s Settings menu to Privacy and Security, and then Delete browsing data. You’ll have options under Basic and Advanced settings to clear browsing history, cookies and site data, and cached images and files. You can choose a time range to delete this data, ranging from the past 24 hours to all time. After selecting what you want to delete, tap Clear data.

How to Get Rid Of Unnecessary Web Files in Samsung Internet

For Samsung Internet, there are two ways to clear your cookies and cache. In the browser app, tap the Options button (three horizontal lines) in the bottom right corner, then go to Settings, and select Personal browsing data. Tap Delete browsing data to choose what you want to delete, such as browsing history, cookies, and cached images. Confirm your choices and delete.

Alternatively, you can clear data from the Settings app on your phone. Go to Settings, then Apps, and select Samsung Internet. Tap Storage, where you’ll find options to Clear cache and Clear storage. Clear cache will delete cached files immediately, while Clear storage will remove all app data, including cookies, settings, and accounts.

How to Declutter in Mozilla Firefox

In Mozilla Firefox, clearing cookies and cache is also straightforward. Tap the More button (three vertical dots) on the right of the address bar, then go to Settings and scroll down to Delete browsing data. Firefox offers options to delete open tabs, browsing history, site permissions, downloads, cookies, and cached images. Unlike Chrome, Firefox does not allow you to select a time range, but you can be specific about the types of data you want to remove.

Firefox also has a feature to automatically delete browsing data every time you quit the app. Enable this by going to Settings and selecting Delete browsing data on quit. This helps keep your browser tidy and ensures your browsing history isn’t accessible if your phone is lost or stolen.

Regularly clearing cookies and cache from your Android browser is crucial for maintaining privacy and keeping your device free from unnecessary data. Each browser—Google Chrome, Samsung Internet, and Mozilla Firefox—offers simple steps to manage and delete this data, boosting both security and performance. By following these steps, you can ensure a safer and more efficient browsing experience on your Android device.


Google Introduces Advanced Anti-Theft and Data Protection Features for Android Devices

 

Google is set to introduce multiple anti-theft and data protection features later this year, targeting devices from Android 10 up to the upcoming Android 15. These new security measures aim to enhance user protection in cases of device theft or loss, combining AI and new authentication protocols to safeguard sensitive data. 

One of the standout features is the AI-powered Theft Detection Lock. This innovation will lock your device's screen if it detects abrupt motions typically associated with theft attempts, such as a thief snatching the device out of your hand. Another feature, the Offline Device Lock, ensures that your device will automatically lock if it is disconnected from the network or if there are too many failed authentication attempts, preventing unauthorized access. 

Google also introduced the Remote Lock feature, allowing users to lock their stolen devices remotely via android.com/lock. This function requires only the phone number and a security challenge, giving users time to recover their account details and utilize additional options in Find My Device, such as initiating a full factory reset to wipe the device clean. 

According to Google Vice President Suzanne Frey, these features aim to make it significantly harder for thieves to access stolen devices. All these features—Theft Detection Lock, Offline Device Lock, and Remote Lock—will be available through a Google Play services update for devices running Android 10 or later. Additionally, the new Android 15 release will bring enhanced factory reset protection. This upgrade will require Google account credentials during the setup process if a stolen device undergoes a factory reset. 

This step renders stolen devices unsellable, thereby reducing incentives for phone theft. Frey explained that without the device or Google account credentials, a thief won't be able to set up the device post-reset, essentially bricking the stolen device. To further bolster security, Android 15 will mandate the use of PIN, password, or biometric authentication when accessing or changing critical Google account and device settings from untrusted locations. This includes actions like changing your PIN, accessing Passkeys, or disabling theft protection. 

Similarly, disabling Find My Device or extending the screen timeout will also require authentication, adding another layer of security against criminals attempting to render a stolen device untrackable. Android 15 will also introduce "private spaces," which can be locked using a user-chosen PIN. This feature is designed to protect sensitive data stored in apps, such as health or financial information, from being accessed by thieves.                                                                           
These updates, including factory reset protection and private spaces, will be part of the Android 15 launch this fall. Enhanced authentication protections will roll out to select devices later this year. 
Google also announced at Google I/O 2024 new features in Android 15 and Google Play Protect aimed at combating scams, fraud, spyware, and banking malware. These comprehensive updates underline Google's commitment to user security in the increasingly digital age.

Android Users Beware: Glitch in 999 Call Feature Raises Concerns

 

Users of Android phones have been alerted by the UK police about a potentially hazardous bug in the 999 emergency call feature. Authorities are worried that some Android devices could unintentionally mute emergency calls, endangering lives. Law enforcement organizations and technological businesses are both taking immediate measures to solve the issue.

According to reports, the glitch occurs when users accidentally press the power button on their Android devices multiple times while attempting to call emergency services. This action activates the phone's silent or vibrate mode, preventing the user from alerting emergency responders effectively. It is crucial to note that in emergency situations, every second counts, and any delay or impediment in making a distress call can have dire consequences.

The UK police have reached out to Google, the company behind the Android operating system, to address this critical issue. Authorities have requested that Google investigate the glitch and implement necessary measures to prevent accidental activation of the silent mode during emergency calls. The timely response and cooperation from Google are vital to rectifying this flaw and ensuring the safety of Android users.

Law enforcement agencies are urging Android phone owners to be cautious while dialing emergency services. It is recommended to double-check the phone's volume settings before making a call to 999. Additionally, users should avoid repeatedly pressing the power button, as this action may trigger the silent mode inadvertently.

The glitch has raised concerns among emergency service providers, who rely on quick and accurate information to respond effectively to emergencies. Any delay or disruption in receiving distress calls can significantly impact the response time and potentially jeopardize lives. It is therefore imperative for both technology companies and smartphone users to remain vigilant and prioritize the reliability and functionality of emergency services.

In response to these concerns, Google has acknowledged the issue and assured the public that they are actively investigating the matter. The company is working to identify the root cause of the glitch and develop a solution to mitigate its impact. Users are advised to install software updates promptly, as these updates often include bug fixes and security patches that address such issues.

While the glitch affects a specific group of Android users, it serves as a reminder of the importance of thorough testing and quality assurance in technology development. Issues like this highlight the need for continuous monitoring and improvement to ensure the safety and reliability of devices and services.

EarSpy Attack: Motion Data Sensors Used to Pry on Android Devices


A team of researchers has created an eavesdropping attack for Android devices that, to varying degrees, can identify the gender and identity of the caller and even decipher private speech. 

EarSpy Attack 

The side-channel attack, EarSpy, opens up new possibilities of eavesdropping via motion sensor data readings produced by reverberations from ear speakers in mobile devices. The attack was initially established in smartphone loudspeakers, since ear speakers were comparatively weak, to produce adequate vibrations for eavesdropping. 

However, today's smartphones include stereo speakers that are more potent, providing far higher sound quality and stronger vibrations. 

The Experiment 

EarSpy is an experiment conducted by a team of researchers from universities like Rutgers University, Texas A&M University, Temple University, New Jersey Institute of Technology, and the University of Dayton. 

  • The researchers utilized the OnePlus 7T and OnePlus 9 devices along with varying sets of pre-recorded audio that was exclusive via the ear speakers of the two devices.  
  • During a simulated call, a third-party app named Physics Toolbox Sensor Suite was used in order to capture accelerometer data. 
  • They then analyzed the audio stream using MATLAB to extract characteristics. 

The research team discovered that caller gender identification on OnePlus 7T device ranged between 77.7% and 98.75%, speech recognition between 51.85% and 56.4%, and caller ID classification between 63.0% and 91.2%. 

This demonstrated the existence of speech feature differentiation in the accelerometer data that attackers can use for eavesdropping. The gender of the user could be ascertained by attackers utilizing a lower sampling rate, as demonstrated by EarSpy's focus on gender recognition using data gathered at 20 Hz. 

How to Prevent Eavesdropping? 

To prevent eavesdropping using sensor data, researchers suggested limiting permissions so that third-party programmes cannot capture sensor data without the user's permission. To avoid unintentional data breaches, Android 13 prohibits the collecting of sensor data at 200 Hz, without the user's consent. 

Mobile device manufacturers shall remain cautious while designing more potent speakers and instead concentrate on keeping a similar sound pressure during audio conversations as was maintained by old-generation phones' ear speakers. 

Moreover, it is recommended to position motion sensors as far from the ear speaker as possible, to minimize the phone speaker’s vibrations and alleviate the likelihood of spying.

'Hermit' Spyware Deployed in Syria, Kazakhstan, and Italy



Lookout Inc. discovered an enterprise-grade Android surveillanceware being used by the authorities operating within Kazakhstan's borders. Lookout researchers identified evidence of the spyware, called "Hermit," being used in Italy and northern Syria. 

Researchers got a sample of "Hermit" in April 2022, four months after a series of violently suppressed nationwide rallies against government policies. The Hermit spyware was most likely built by RCS Lab S.p.A, an Italian surveillance firm, and Tykelab Srl. 

The Hermit spyware was most likely produced by Italian surveillance vendor RCS Lab S.p.A and Tykelab Srl, a telecommunications solutions company accused of acting as a front company, according to Lookout. 

In the same market as Pegasus creator NSO Group Technologies and Gamma Group, which invented FinFisher, is a well-known developer with previous interactions with governments such as Syria. This appears to be the first time that a modern RCS Lab mobile spyware client has been publicly disclosed. 

The spyware is said to be spread by SMS messages that spoof users into installing what appear to be harmless apps from Samsung, Vivo, and Oppo, which, when launched, load a website from the impersonated company while silently initiating the kill chain. 

Spyware has been seen to infect Android smartphones in the past. The threat actor APT-C-23 (aka Arid Viper) was linked to a series of attacks targeting Middle Eastern users with new FrozenCell versions in November 2021. Last month, Google's Threat Analysis Group (TAG) revealed that government-backed actors in Egypt, Armenia, Greece, Madagascar, Côte d'Ivoire, Serbia, Spain, and Indonesia are purchasing Android zero-day exploits for covert surveillance efforts. 

As per Lookout, the samples studied used a Kazakh language website as a decoy, and the main Command-and-control (C2) server used by this app was a proxy, with the true C2 being located on an IP from Kazakhstan. "They call themselves 'lawful intercept' organizations since they claim to only sell to customers with legitimate surveillance purposes, such as intelligence and law enforcement agencies. Under the pretext of national security, similar technologies have been used to phish on corporate executives, human rights activists, journalists, academics, and government officials "as per the researchers. 

The revelations came as the Israel-based NSO Group is rumored to be in talks to sell its Pegasus technology to US defense contractor L3Harris, which makes StingRay cellular phone trackers, raising concerns it could allow law enforcement to deploy the controversial hacking tool.

Hardware Bugs Provide Bluetooth Chipsets Unique Traceable Fingerprints

 

A recent study from the University of California, San Diego, has proven for the first time that Bluetooth signals may be fingerprinted to track devices (and therefore, individuals). At its root, the identification is based on flaws in the Bluetooth chipset hardware established during the manufacturing process, leading to a "unique physical-layer fingerprint."

The researchers said in a new paper titled "Evaluating Physical-Layer BLE Location Tracking Attacks on Mobile Devices, "To perform a physical-layer fingerprinting attack, the attacker must be equipped with a Software Defined Radio sniffer: a radio receiver capable of recording raw IQ radio signals." 

The assault is made feasible by the pervasiveness of Bluetooth Low Energy (BLE) beacons, which are constantly delivered by current smartphones to allow critical tasks such as contact tracking during public health situations. 

The hardware flaws come from the fact that both Wi-Fi and BLE components are frequently incorporated into a specialised "combo chip," effectively subjecting Bluetooth to the same set of metrics that may be utilized to uniquely fingerprint Wi-Fi devices: carrier frequency offset and IQ imbalance. 

Fingerprinting and monitoring a device, therefore, includes calculating the Mahalanobis distance for each packet to ascertain how similar the characteristics of the new packet are to its previously registered hardware defect fingerprint. 

"Also, since BLE devices have temporarily stable identifiers in their packets [i.e., MAC address], we can identify a device based on the average over multiple packets, increasing identification accuracy," the researchers stated. 

However, carrying out such an attack in an adversarial situation has numerous obstacles, the most significant of which is that the ability to uniquely identify a device is dependent on the BLE chipset employed as well as the chipsets of other devices in close physical distance to the target. Other key aspects that may influence the readings include device temperature, variations in BLE transmit power between iPhone and Android devices, and the quality of the sniffer radio utilised by the malicious actor to carry out the fingerprinting assaults. 

The researchers concluded, "By evaluating the practicality of this attack in the field, particularly in busy settings such as coffee shops, we found that certain devices have unique fingerprints, and therefore are particularly vulnerable to tracking attacks, others have common fingerprints, they will often be misidentified. BLE does present a location tracking threat for mobile devices. However, an attacker's ability to track a particular target is essentially a matter of luck."

Turkish National Charged for DDoS Attack on U.S. Company

 

Authorities in the United States charged a Turkish national for launching distributed denial-of-service (DDoS) assaults against a Chicago-based multinational hospitality company using a now-defunct malware botnet. 

Izzet Mert Ozek, 32, is accused of launching attacks against the Chicago multinational in August 2017 using WireX, a botnet developed using Android malware. 

According to authorities, Ozek's attacks caused infected Android devices to transmit massive volumes of online traffic to the company's public website and online booking service, leading servers to crash. As per the news release from the US Department of Justice, the charges were announced on September 29 in the Northern District of Illinois. 

The press release stated, “In August 2017, IZZET MERT OZEK used the WireX botnet, which consisted of compromised Google Android devices, to direct large amounts of network traffic to the hospitality company’s website, preventing legitimate users from completing hotel bookings, according to an indictment returned Tuesday in U.S. District Court in Chicago. The hospitality company, which managed luxury hotels and resorts, was headquartered in Chicago and the servers for its website were located in northern Illinois.” 

“The indictment charges Ozek, 32, with one count of intentionally causing damage to a protected computer. Ozek is believed to be residing in Turkey, and a warrant for his arrest will be issued.” 

The official statement and indictment do not specify whether Ozek developed the WireX botnet himself or bought it from a third party. The botnet, which was created just a month before in July 2017, soon grew to gigantic size of more than 120,000 bots after its creator attacked Android smartphones with fraudulent Android apps. 

Months after the disastrous Mirai malware attacks at the end of 2016, the cyber-security industry responded quickly to eliminate the emerging danger while it was still in its early phases. 

A coalition of security firms, including Akamai, Cloudflare, Flashpoint, Google, Dyn, RiskIQ, and Team Cymr, launched an investigation weeks after the attack on the Chicago multinational company to track WireX’s bots and backend infrastructure and then seize and take down its command and control systems.

GriftHorse Malware has Infected More than 10 Million Android Devices

 

A new malware named GriftHorse is said to have infected over 10 million Android cell phones. According to the research at mobile security firm Zimperium, the threat group has been executing the campaign since November 2020. The GriftHorse malware was propagated through both Google Play and third-party application stores, according to the research group, and it stole "hundreds of millions of Euros" from victims. 

GriftHorse will produce a significant number of notifications and popups when a user downloads any of the malicious programmes, luring consumers in with exceptional discounts or prizes. People who click these are taken to a web page where they must authenticate their phone number in order to gain access to the promotion. 

In actuality, GriftHorse's victims are paying for premium SMS services that cost more than $35 per month. GriftHorse operators are thought to have made anywhere from $1.5 million to $4 million per month with this fraud, and their initial victims are thought to have lost more than $230 if they didn't stop the scam. 

GriftHorse malware has been tracked by Zimperium researchers Aazim Yaswant and Nipun Gupta for months, and they describe it as "one of the most widespread campaigns the zLabs threat research team has encountered in 2021." But, according to the two Zimperium researchers, the GriftHorse developers put a lot of effort into the quality of their malware, using a wide range of websites, malicious apps, and developer personas to infect victims and evade detection as much as possible.

“The level of sophistication, use of novel techniques, and determination displayed by the threat actors allowed them to stay undetected for several months,” Yaswant and Gupta explained. “In addition to a large number of applications, the distribution of the applications was extremely well-planned, spreading their apps across multiple, varied categories, widening the range of potential victims.” 

Handy Translator Pro, Heart Rate and Pulse Tracker, Geospot: GPS Location Tracker, iCare – Find Location, and My Chat Translator are among the popular apps infested with GriftHorse malware. Users in India are also affected, according to the firm. Zimperium, a member of the App Defense Alliance, claimed it alerted Google about all GriftHorse-infected apps, which have since been withdrawn from the Play Store. These apps may, however, still be available in third-party app stores.