Security researchers have identified a previously undocumented cyber espionage group that infiltrated at least 70 government and critical infrastructure organizations across 37 countries within the past year. The same activity cluster also conducted wide-scale scanning and probing of government-related systems connected to 155 countries between November and December 2025, indicating a broad intelligence collection effort rather than isolated attacks.
The group is tracked as TGR-STA-1030, a temporary designation used for actors assessed to operate with state-backed intent. Investigators report evidence of activity dating back to January 2024. While no specific country has been publicly confirmed as the sponsor, technical indicators suggest an Asian operational footprint. These indicators include the services and tools used, language and configuration preferences, targeting patterns tied to regional interests, and working hours consistent with the GMT+8 time zone.
Who was targeted and what was taken
Confirmed victims include national law enforcement and border agencies, finance ministries, and departments responsible for trade, natural resources, and diplomatic affairs. In several intrusions, attackers maintained access for months. During these periods, sensitive data was taken from compromised email servers, including financial negotiations, contract material, banking information, and operational details linked to military or security functions.
How the intrusions worked
The initial entry point commonly involved phishing messages that led recipients to download files hosted on a legitimate cloud storage service. The downloaded archive contained a custom loader and a decoy file. The malware was engineered to avoid automated analysis by refusing to run unless specific environmental conditions were met, including a required screen resolution and the presence of the decoy file. It also checked for the presence of selected security products before proceeding.
Once active, the loader retrieved additional components disguised as image files from a public code repository. These components were used to deploy a well known command and control framework to manage compromised systems. The repository linked to this activity has since been taken down.
Beyond phishing, the group relied on known vulnerabilities in widely used enterprise and network software to gain initial access. There is no indication that previously unknown flaws were used. After entry, the attackers employed a mix of command and control tools, web shells for remote access, and tunneling utilities to move traffic through intermediary servers.
Researchers also observed a Linux kernel level implant that hides processes, files, and network activity by manipulating low level system functions. This tool concealed directories with a specific name to avoid detection. To mask their operations, the attackers rented infrastructure from legitimate hosting providers and routed traffic through additional relay servers.
Analysts assess that the campaign focuses on countries with active or emerging economic partnerships of interest to the attackers. The scale, persistence, and technical depth of these operations highlight ongoing risks to national security and essential public services, and reinforce the need for timely patching, email security controls, and continuous monitoring across government networks.
Modern organizations rely on a wide range of software systems to run daily operations. While identity and access management tools were originally designed to control users and directory services, much of today’s identity activity no longer sits inside those centralized platforms. Access decisions increasingly happen inside application code, application programming interfaces, service accounts, and custom login mechanisms. In many environments, credentials are stored within applications, permissions are enforced locally, and usage patterns evolve without formal review.
As a result, substantial portions of identity activity operate beyond the visibility of traditional identity, privileged access, and governance tools. This creates a persistent blind spot for security teams. The unseen portion of identity behavior represents risk that cannot be directly monitored or governed using configuration-based controls alone.
Conventional identity programs depend on predefined policies and system settings. These approaches work for centrally managed user accounts, but they do not adequately address custom-built software, legacy authentication processes, embedded secrets, non-human identities such as service accounts, or access routes that bypass identity providers. When these conditions exist, teams are often forced to reconstruct how access occurred after an incident or during an audit. This reactive process is labor-intensive and does not scale in complex enterprise environments.
Orchid Security positions its platform as a way to close this visibility gap through continuous identity observability across applications. The platform follows a four-part operational model designed to align with how security teams work in practice.
First, the platform identifies applications and examines how identity is implemented within them. Lightweight inspection techniques review authentication methods, authorization logic, and credential usage across both managed and unmanaged systems. This produces an inventory of applications, identity types, access flows, and embedded credentials, establishing a baseline of how identity functions in the environment.
Second, observed identity activity is evaluated in context. By linking identities, applications, and access paths, the platform highlights risks such as shared or hardcoded secrets, unused service accounts, privileged access that exists outside centralized controls, and differences between intended access design and real usage. This assessment is grounded in what is actually happening, not in what policies assume should happen.
Third, the platform supports remediation by integrating with existing identity and security processes. Teams can rank risks by potential impact, assign ownership to the appropriate control teams, and monitor progress as issues are addressed. The goal is coordination across current controls rather than replacement.
Finally, because discovery and analysis operate continuously, evidence for governance and compliance is available at all times. Current application inventories, records of identity usage, and documentation of control gaps and corrective actions are maintained on an ongoing basis. This shifts audits from periodic, manual exercises to a continuous readiness model.
As identity increasingly moves into application layers, sustained visibility into how access actually functions becomes essential for reducing unmanaged exposure, improving audit preparedness, and enabling decisions based on verified operational data rather than assumptions.
Inside a government building in Rome, located opposite the ancient Aurelian Walls, dozens of cybersecurity professionals have been carrying out continuous monitoring operations for nearly a year. Their work focuses on tracking suspicious discussions and coordination activity taking place across hidden corners of the internet, including underground criminal forums and dark web marketplaces. This monitoring effort forms a core part of Italy’s preparations to protect the Milano–Cortina Winter Olympic Games from cyberattacks.
The responsibility for securing the digital environment of the Games lies with Italy’s National Cybersecurity Agency, an institution formed in 2021 to centralize the country’s cyber defense strategy. The upcoming Winter Olympics represent the agency’s first large-scale international operational test. Officials view the event as a likely target for cyber threats because the Olympics attract intense global attention. Such visibility can draw a wide spectrum of malicious actors, ranging from small-scale cybercriminal groups seeking disruption or financial gain to advanced threat groups believed to have links with state interests. These actors may attempt to use the event as a platform to make political statements, associate attacks with ideological causes, or exploit broader geopolitical tensions.
The Milano–Cortina Winter Games will run from February 6 to February 22 and will be hosted across multiple Alpine regions for the first time in Olympic history. This multi-location format introduces additional security and coordination challenges. Each venue relies on interconnected digital systems, including communications networks, event management platforms, broadcasting infrastructure, and logistics systems. Securing a geographically distributed digital environment exponentially increases the complexity of monitoring, response coordination, and incident containment.
Officials estimate that the Games will reach approximately three billion viewers globally, alongside around 1.5 million ticket-holding spectators on site. This scale creates a vast digital footprint. High-visibility services, such as live streaming platforms, official event websites, and ticket purchasing systems, are considered particularly attractive targets. Disrupting these services can generate widespread media attention, cause public confusion, and undermine confidence in the organizers’ ability to safeguard critical digital operations.
Italy’s planning has been shaped by recent Olympic experience. During the 2024 Paris Summer Olympics, authorities recorded more than 140 cyber incidents. In 22 cases, attackers managed to gain access to information systems. While none of these incidents disrupted the competitions themselves, the sheer volume of hostile activity demonstrated the persistent pressure faced by host nations. On the day of the opening ceremony in Paris, France’s TGV high-speed rail network was also targeted in coordinated physical sabotage attacks involving explosive devices. This incident illustrated how large global events can attract both cyber threats and physical security risks at the same time.
Italian cybersecurity officials anticipate comparable levels of hostile activity during the Milano–Cortina Games, with an additional layer of complexity introduced by artificial intelligence. AI tools can be used by attackers to automate technical tasks, enhance reconnaissance, and support more convincing phishing and impersonation campaigns. These techniques can increase the speed and scale of cyber operations while making malicious activity harder to detect. Although authorities currently report no specific, elevated threat level, they acknowledge that the overall risk environment is becoming more complex due to the growing availability of AI-assisted tools.
The National Cybersecurity Agency’s defensive approach emphasizes early detection rather than reactive response. Analysts continuously monitor open websites, underground criminal communities, and social media channels to identify emerging threat patterns before they develop into direct intrusion attempts. This method is designed to provide early warning, allowing technical teams to strengthen defenses before attackers move from planning to execution.
Operational coordination will involve multiple teams. Around 20 specialists from the agency’s operational staff will focus exclusively on Olympic-related cyber intelligence from the headquarters in Rome. An additional 10 senior experts will be deployed to Milan starting on February 4 to support the Technology Operations Centre, which oversees the digital systems supporting the Games. These government teams will operate alongside nearly 100 specialists from Deloitte and approximately 300 personnel from the local organizing committee and technology partners. Together, these groups will manage cybersecurity monitoring, incident response, and system resilience across all Olympic venues.
If threats keep developing during the Games, the agency will continuously feed intelligence into technical operations teams to support rapid decision-making. The guiding objective remains consistent. Detect emerging risks early, interpret threat signals accurately, and respond quickly and effectively when specific dangers become visible. This approach reflects Italy’s broader strategy to protect the digital infrastructure that underpins one of the world’s most prominent international sporting events.
Cybercriminals are running a large-scale email scam that falsely claims cloud storage subscriptions have failed. For several months, people across different countries have been receiving repeated messages warning that their photos, files, and entire accounts will soon be restricted or erased due to an alleged payment issue. The volume of these emails has increased sharply, with many users receiving several versions of the same scam in a single day, all tied to the same operation.
Although the wording of each email differs, the underlying tactic remains the same. The messages pressure recipients to act immediately by claiming that a billing problem or storage limit must be fixed right away to avoid losing access to personal data. These emails are sent from unrelated and randomly created domains rather than official service addresses, a common sign of phishing activity.
The subject lines are crafted to trigger panic and curiosity. Many include personal names, email addresses, reference numbers, or specific future dates to appear genuine. The messages state that a renewal attempt failed or a payment method expired, warning that backups may stop working and that photos, videos, documents, and device data could disappear if the issue is not resolved. Fake account numbers, subscription details, and expiry dates are used to strengthen the illusion of legitimacy.
Every email in this campaign contains a link. While the first web address may appear to belong to a well-known cloud hosting platform, it only acts as a temporary relay. Clicking it silently redirects the user to fraudulent websites hosted on changing domains. These pages imitate real cloud dashboards and display cloud-related branding to gain trust. They falsely claim that storage is full and that syncing of photos, contacts, files, and backups has stopped, warning that data will be lost without immediate action.
After clicking forward, users are shown a fake scan that always reports that services such as photo storage, drive space, and email are full. Victims are then offered a short-term discount, presented as a loyalty upgrade with a large price reduction. Instead of leading to a real cloud provider, the buttons redirect users to unrelated sales pages advertising VPNs, obscure security tools, and other subscription products. The final step leads to payment forms designed to collect card details and generate profit for the scammers through affiliate schemes.
Many recipients mistakenly believe these offers will fix a real storage problem and end up paying for unnecessary products. These emails and websites are not official notifications. Real cloud companies do not solve billing problems through storage scans or third-party product promotions. When payments fail, legitimate providers usually restrict extra storage first and provide a grace period before any data removal.
Users should delete such emails without opening links and avoid purchasing anything promoted through them. Any concerns about storage or billing should be checked directly through the official website or app of the cloud service provider.
Google owned Mandiant’s threat intelligence team is tracking the attacks under various clusters: UNC6661, UNC6671, and UNC6240 (aka ShinyHunters). These gangs might be improving their attack tactics. "While this methodology of targeting identity providers and SaaS platforms is consistent with our prior observations of threat activity preceding ShinyHunters-branded extortion, the breadth of targeted cloud platforms continues to expand as these threat actors seek more sensitive data for extortion," Mandiant said.
"Further, they appear to be escalating their extortion tactics with recent incidents, including harassment of victim personnel, among other tactics.”
UNC6661 was pretending to be IT staff sending employees to credential harvesting links tricking them into multi-factor authentication (MFA) settings. This was found during mid-January 2026.
Threat actors used stolen credentials to register their own device for MFA and further steal data from SaaS platforms. In one incident, the hacker exploited their access to infected email accounts to send more phishing emails to users in cryptocurrency based organizations.
The emails were later deleted to hide the tracks. Experts also found UNC6671 mimicking IT staff to fool victims to steal credentials and MFA login codes on credential harvesting websites since the start of this year. In a few incidents, the hackers got access to Okta accounts.
UNC6671 leveraged PowerShell to steal sensitive data from OneDrive and SharePoint.
The use of different domain registrars to register the credential harvesting domains (NICENIC for UNC6661 and Tucows for UNC6671) and the fact that an extortion email sent after UNC6671 activity did not overlap with known UNC6240 indicators are the two main differences between UNC6661 and UNC6671.
This suggests that other groups of people might be participating, highlighting how nebulous these cybercrime organizations are. Furthermore, the targeting of bitcoin companies raises the possibility that the threat actors are searching for other opportunities to make money.
Ivanti has released urgent security updates for two serious vulnerabilities in its Endpoint Manager Mobile (EPMM) platform that were already being abused by attackers before the flaws became public. EPMM is widely used by enterprises to manage and secure mobile devices, which makes exposed servers a high-risk entry point into corporate networks.
The two weaknesses, identified as CVE-2026-1281 and CVE-2026-1340, allow attackers to remotely run commands on vulnerable servers without logging in. Both flaws were assigned near-maximum severity scores because they can give attackers deep control over affected systems. Ivanti confirmed that a small number of customers had already been compromised at the time the issues were disclosed.
This incident reflects a broader pattern of severe security failures affecting enterprise technology vendors in January in recent years. Similar high-impact vulnerabilities have previously forced organizations to urgently patch network security and access control products. The repeated targeting of these platforms shows that attackers focus on systems that provide centralized control over devices and identities.
Ivanti stated that only on-premises EPMM deployments are affected. Its cloud-based mobile management services, other endpoint management products, and environments using Ivanti cloud services with Sentry are not impacted by these flaws.
If attackers exploit these vulnerabilities, they can move within internal networks, change system settings, grant themselves administrative privileges, and access stored information. The exposed data may include basic personal details of administrators and device users, along with device-related information such as phone numbers and location data, depending on how the system is configured.
Ivanti has not provided specific indicators of compromise because only a limited number of confirmed cases are known. However, the company published technical analysis to support investigations. Security teams are advised to review web server logs for unusual requests, particularly those containing command-like input. Exploitation attempts may appear as abnormal activity involving internal application distribution or Android file transfer functions, sometimes producing error responses instead of successful ones. Requests sent to error pages using unexpected methods or parameters should be treated as highly suspicious.
Previous investigations show attackers often maintain access by placing or modifying web shell files on application error pages. Security teams should also watch for unexpected application archive files being added to servers, as these may be used to create remote connections back to attackers. Because EPMM does not normally initiate outbound network traffic, any such activity in firewall logs should be treated as a strong warning sign.
Ivanti advises organizations that detect compromise to restore systems from clean backups or rebuild affected servers before applying updates. Attempting to manually clean infected systems is not recommended. Because these flaws were exploited before patches were released, organizations that had vulnerable EPMM servers exposed to the internet at the time of disclosure should treat those systems as compromised and initiate full incident response procedures rather than relying on patching alone.
The US Cybersecurity and Infrastructure Security Agency (CISA) has released new guidance warning that insider threats represent a major and growing risk to organizational security. The advisory was issued during the same week reports emerged about a senior agency official mishandling sensitive information, drawing renewed attention to the dangers posed by internal security lapses.
In its announcement, CISA described insider threats as risks that originate from within an organization and can arise from either malicious intent or accidental mistakes. The agency stressed that trusted individuals with legitimate system access can unintentionally cause serious harm to data security, operational stability, and public confidence.
To help organizations manage these risks, CISA published an infographic outlining how to create a structured insider threat management team. The agency recommends that these teams include professionals from multiple departments, such as human resources, legal counsel, cybersecurity teams, IT leadership, and threat analysis units. Depending on the situation, organizations may also need to work with external partners, including law enforcement or health and risk professionals.
According to CISA, these teams are responsible for overseeing insider threat programs, identifying early warning signs, and responding to potential risks before they escalate into larger incidents. The agency also pointed organizations to additional free resources, including a detailed mitigation guide, training workshops, and tools to evaluate the effectiveness of insider threat programs.
Acting CISA Director Madhu Gottumukkala emphasized that insider threats can undermine trust and disrupt critical operations, making them particularly challenging to detect and prevent.
Shortly before the guidance was released, media reports revealed that Gottumukkala had uploaded sensitive CISA contracting documents into a public version of an AI chatbot during the previous summer. According to unnamed officials, the activity triggered automated security alerts designed to prevent unauthorized data exposure from federal systems.
CISA’s Director of Public Affairs later confirmed that the chatbot was used with specific controls in place and stated that the usage was limited in duration. The agency noted that the official had received temporary authorization to access the tool and last used it in mid-July 2025.
By default, CISA blocks employee access to public AI platforms unless an exception is granted. The Department of Homeland Security, which oversees CISA, also operates an internal AI system designed to prevent sensitive government information from leaving federal networks.
Security experts caution that data shared with public AI services may be stored or processed outside the user’s control, depending on platform policies. This makes such tools particularly risky when handling government or critical infrastructure information.
The incident adds to a series of reported internal disputes and security-related controversies involving senior leadership, as well as similar lapses across other US government departments in recent years. These cases are a testament to how poor internal controls and misuse of personal or unsecured technologies can place national security and critical infrastructure at risk.
While CISA’s guidance is primarily aimed at critical infrastructure operators and regional governments, recent events suggest that insider threat management remains a challenge across all levels of government. As organizations increasingly rely on AI and interconnected digital systems, experts continue to stress that strong oversight, clear policies, and leadership accountability are essential to reducing insider-related security risks.