In today’s complex digital landscape, the role of human expertise in cybersecurity remains indispensable. Two pivotal approaches — human-led security testing and human-centric cybersecurity (HCC) — have gained prominence, each contributing distinct strengths. However, these strategies often function in silos, creating fragmented defenses. To achieve comprehensive cyber resilience, organizations must integrate these methods with advanced technologies like automation and data analytics.
Human-led security testing leverages the intuition and expertise of cybersecurity professionals. Ethical hackers and penetration testers bring invaluable insights, uncovering vulnerabilities that automated tools may overlook. Their ability to simulate real-world attack scenarios allows organizations to anticipate and neutralize sophisticated cyber threats dynamically. This approach ensures tailored defenses capable of adapting to specific challenges.
On the other hand, human-centric cybersecurity (HCC) focuses on empowering end users by designing security measures that align with their behaviours and limitations. Traditional tools often burden users with complexity, leading to risky workarounds. HCC addresses this by creating intuitive, accessible solutions that seamlessly integrate into daily workflows. When users perceive these measures as helpful rather than obstructive, compliance improves, enhancing overall security frameworks.
Technology acts as a vital bridge between these human-driven approaches. Automation and data analytics provide scalability and efficiency, handling repetitive tasks and processing vast data volumes. Real-time threat intelligence and continuous monitoring enable organizations to identify and respond to emerging risks quickly. This technological backbone allows human experts to focus on addressing complex, strategic challenges.
Integrating these elements fosters a proactive security culture where people, not just systems, are central to defense strategies. Educating employees, conducting regular threat simulations, and promoting secure behaviors through incentives help build shared responsibility for cybersecurity. Research forecasts that by 2027, half of large enterprises will adopt HCC strategies, prioritizing security behavior and culture programs (SBCPs). These initiatives utilize simulations, automation, and analytics to encourage informed decision-making and enhance incident reporting.
A holistic cybersecurity approach blends human intuition, user-friendly processes, and technology-driven efficiency. Human-led testing uncovers evolving threats, while HCC empowers employees to respond confidently to risks. Automation and analytics amplify these efforts, providing actionable insights and driving continuous improvements. Together, these elements create a robust, forward-thinking cybersecurity environment capable of meeting the challenges of an ever-evolving digital world.
The Jenkins RCE vulnerability stems from a flaw in the args4j command parser, a library used by Jenkins to parse command-line arguments. This flaw allows attackers to execute arbitrary code on the Jenkins server by sending specially crafted requests. The vulnerability can also be exploited to read arbitrary files on the server, potentially exposing sensitive information.
The args4j library is integral to Jenkins’ functionality, making this vulnerability particularly concerning. Attackers exploiting this flaw can gain full control over the Jenkins server, enabling them to deploy ransomware, steal data, or disrupt CI/CD pipelines. Given Jenkins’ widespread use in automating software development processes, the impact of such an exploit can be far-reaching.
The exploitation of the Jenkins RCE vulnerability has already been observed in several ransomware attacks. Ransomware, a type of malware that encrypts a victim’s data and demands payment for its release, has become a prevalent threat in recent years. By exploiting the Jenkins vulnerability, attackers can access critical infrastructure, encrypt valuable data, and demand ransom payments from affected organizations.
The consequences of a successful ransomware attack can be devastating. Organizations may face significant financial losses, operational disruptions, and reputational damage. In some cases, the recovery process can be lengthy and costly, further exacerbating the impact of the attack. As such, it is crucial for organizations using Jenkins to take immediate action to mitigate the risk posed by this vulnerability.
We are in a fast-paced industry, and with the rise of technological developments each day, the chances of cyber attacks always arise. Hence, defense against such attacks and cybersecurity becomes paramount.
The latest research into the cybersecurity industry by Seemplicity revealed that 91% of participants claim their security budget is increasing this year. It shows us the growing importance of cybersecurity in organizations.
A survey of 300 US cybersecurity experts to understand views about breathing topics like automation, AI, regulatory compliance, vulnerability and exposure management. Organizations reported employing 38 cybersecurity vendors, highlighting sophisticated complexity and fragmentation levels within the attack surfaces.
The fragmentation results in 51% of respondents feeling high levels of noise from the tools, feeling overwhelmed due to the traffic of notifications, alerts, and findings, most of which are not signaled anywhere.
As a result, 85% of respondents need help with handling this noise. The most troubling challenge reported being slow or delayed risk reduction, highlighting the seriousness of the problem, because of the inundating noise slowing down effective vulnerability identification and therefore caused a delay in response to threats.
97% of respondents cited methods (at least one) to control noise, showing acceptance of the problem and urgency to resolve it. 97% showed some signs of automation, hinting at a growth toward recognizing the perks of automation in vulnerability and exposure management. The growing trend towards automation tells us one thing, there is a positive adoption response.
However, 44% of respondents still rely on manual methods, a sign that there still exists a gap to full automation.
But the message is loud and clear, automation has helped in vulnerability and exposure management efficiency, as 89% of leaders report benefits, the top being a quicker response to emergency threats.
The existing opinion (64%) that AI will be a key force against fighting cyber threats is a positive sign showing its potential to build robust cybersecurity infrastructure. However, there is also a major concern (68%) about the effects of integrating AI into software development on vulnerability and exposure management. AI will increase the pace of code development, and the security teams will find it difficult to catch up.
As artificial intelligence (AI) advances, it accelerates code development at a pace that cybersecurity teams struggle to match. A recent survey by Seemplicity, which included 300 US cybersecurity professionals, highlights this growing concern. The survey delves into key topics like vulnerability management, automation, and regulatory compliance, revealing a complex array of challenges and opportunities.
Fragmentation in Security Environments
Organisations now rely on an average of 38 different security product vendors, leading to significant complexity and fragmentation in their security frameworks. This fragmentation is a double-edged sword. While it broadens the arsenal against cyber threats, it also results in an overwhelming amount of noise from security tools. 51% of respondents report being inundated with alerts and notifications, many of which are false positives or non-critical issues. This noise significantly hampers effective vulnerability identification and prioritisation, causing delays in addressing real threats. Consequently, 85% of cybersecurity professionals find managing this noise to be a substantial challenge, with the primary issue being slow risk reduction.
The Rise of Automation in Cybersecurity
In the face of overwhelming security alerts, automation is emerging as a crucial tool for managing cybersecurity vulnerabilities. According to a survey by Seemplicity, 95% of organizations have implemented at least one automated method to manage the deluge of alerts. Automation is primarily used in three key areas:
1. Vulnerability Scanning: 65% of participants have adopted automation to enhance the precision and speed of identifying vulnerabilities, significantly streamlining this process.
2. Vulnerability Prioritization: 53% utilise automation to rank vulnerabilities based on their severity, ensuring that the most critical issues are addressed first.
3. Remediation: 41% of respondents automate the assignment of remediation tasks and the execution of fixes, making these processes more efficient.
Despite these advancements, 44% still rely on manual methods to some extent, highlighting obstacles to complete automation. Nevertheless, 89% of cybersecurity leaders acknowledge that automation has increased efficiency, particularly in accelerating threat response.
AI's Growing Role in Cybersecurity
The survey highlights a robust confidence in AI's ability to transform cybersecurity practices. An impressive 85% of organizations intend to increase their AI spending over the next five years. Survey participants expect AI to greatly enhance early stages of managing vulnerabilities in the following ways:
1. Vulnerability Assessment: It is argued by 38% of the demographic that AI will boost the precision and effectiveness of spotting vulnerabilities.
2. Vulnerability Prioritisation: 30% view AI as crucial for accurately ranking vulnerabilities based on their severity and urgency.
Additionally, 64% of respondents see AI as a strong asset in combating cyber threats, indicating a high level of optimism about its potential. However, 68% are concerned that incorporating AI into software development will accelerate code production at a pace that outstrips security teams' ability to manage, creating new challenges in vulnerability management.
Views on New SEC Incident Reporting Requirements
The survey also sheds light on perspectives regarding the new SEC incident reporting requirements. Over half of the respondents see these regulations as opportunities to enhance vulnerability management, particularly in improving logging, reporting, and overall security hygiene. Surprisingly, fewer than a quarter of respondents view these requirements as adding bureaucratic burdens.
Trend Towards Continuous Threat Exposure Management (CTEM)
A trend from the survey is the likely adoption of Continuous Threat Exposure Management (CTEM) programs by 90% of respondents. Unlike traditional periodic assessments, CTEM provides continuous monitoring and proactive risk management, helping organizations stay ahead of threats by constantly assessing their IT infrastructure for vulnerabilities.
The Seemplicity survey highlights both the challenges and potential solutions in the evolving field of cybersecurity. As AI accelerates code development, integrating automation and continuous monitoring will be essential to managing the increasing complexity and noise in security environments. Organizations are increasingly recognizing the need for more intelligent and efficient methods to stay ahead of cyber threats, signaling a shift towards more proactive and comprehensive cybersecurity strategies.
In the digital society, defenders are grappling with the transformative impact of artificial intelligence (AI), automation, and the rise of Cybercrime-as-a-Service. Recent research commissioned by Darktrace reveals that 89% of global IT security teams believe AI-augmented cyber threats will significantly impact their organisations within the next two years, yet 60% feel unprepared to defend against these evolving attacks.
One notable effect of AI in cybersecurity is its influence on phishing attempts. Darktrace's observations show a 135% increase in 'novel social engineering attacks' in early 2023, coinciding with the widespread adoption of ChatGPT2. These attacks, with linguistic deviations from typical phishing emails, indicate that generative AI is enabling threat actors to craft sophisticated and targeted attacks at an unprecedented speed and scale.
Moreover, the situation is further complicated by the rise of Cybercrime-as-a-Service. Darktrace's 2023 End of Year Threat Report highlights the dominance of cybercrime-as-a-service, with tools like malware-as-a-Service and ransomware-as-a-service making up the majority of harrowing tools used by attackers. This as-a-Service ecosystem provides attackers with pre-made malware, phishing email templates, payment processing systems, and even helplines, reducing the technical knowledge required to execute attacks.
As cyber threats become more automated and AI-augmented, the World Economic Forum's Global Cybersecurity Outlook 2024 warns that organisations maintaining minimum viable cyber resilience have decreased by 30% compared to 2023. Small and medium-sized companies, in particular, show a significant decline in cyber resilience. The need for proactive cyber readiness becomes pivotal in the face of an increasingly automated and AI-driven threat environment.
Traditionally, organisations relied on reactive measures, waiting for incidents to happen and using known attack data for threat detection and response. However, this approach is no longer sufficient. The shift to proactive cyber readiness involves identifying vulnerabilities, addressing security policy gaps, breaking down silos for comprehensive threat investigation, and leveraging AI to augment human analysts.
AI plays a crucial role in breaking down silos within Security Operations Centers (SOCs) by providing a proactive approach to scale up defenders. By correlating information from various systems, datasets, and tools, AI can offer real-time behavioural insights that human analysts alone cannot achieve. Darktrace's experience in applying AI to cybersecurity over the past decade emphasises the importance of a balanced mix of people, processes, and technology for effective cyber defence.
A successful human-AI partnership can alleviate the burden on security teams by automating time-intensive and error-prone tasks, allowing human analysts to focus on higher-value activities. This collaboration not only enhances incident response and continuous monitoring but also reduces burnout, supports data-driven decision-making, and addresses the skills shortage in cybersecurity.
As AI continues to advance, defenders must stay ahead, embracing a proactive approach to cyber resilience. Prioritising cybersecurity will not only protect institutions but also foster innovation and progress as AI development continues. The key takeaway is clear: the escalation in threats demands a collaborative effort between human expertise and AI capabilities to navigate the complex challenges posed by AI, automation, and Cybercrime-as-a-Service.