Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Cloud. Show all posts

Google Cloud Introduces Quantum-Safe Digital Signatures

 

As quantum computing advances, Google Cloud is taking a significant step toward securing its platform against future threats. The company has announced the introduction of quantum-safe digital signatures in its Cloud Key Management Service (KMS), currently available in preview. 

This move is part of a broader initiative to prepare for the potential risks that quantum computers pose to modern encryption systems. While fully capable quantum computers are not expected to be widely available for at least a decade, they could one day break most of today’s encryption methods in a matter of hours. This looming possibility has led to concerns over a harvest-now-decrypt-later strategy employed by cybercriminals. 

In this method, attackers steal encrypted data today, intending to decrypt it once quantum computing becomes powerful enough. To counter this risk, researchers are developing post-quantum cryptography (PQC)—encryption techniques specifically designed to withstand quantum attacks. One major security risk posed by quantum computing is the potential forgery and manipulation of digital signatures. 

Digital signatures authenticate documents and communications, ensuring they have not been tampered with. If compromised, they could allow attackers to impersonate legitimate users, forge transactions, or spread malware under trusted identities. Google Cloud recognizes the importance of addressing these concerns early and has introduced quantum-resistant digital signatures to build a more secure infrastructure. 

This initiative also aims to set an industry precedent for other cloud service providers. As part of its commitment to transparency and security, Google Cloud has announced that its quantum-related cryptographic implementations will be included in its open-source cryptographic libraries, BoringCrypto and Tink. This allows security researchers and developers to review, audit, and contribute to these implementations, ensuring their robustness against potential threats. 

The new quantum-safe digital signatures in Cloud KMS specifically implement ML-DSA-65 and SLH-DSA-SHA2-128S, two PQC algorithms that adhere to NIST (National Institute of Standards and Technology) standards. Google Cloud has also confirmed plans to integrate additional PQC algorithms into its Hardware Security Modules (HSMs), which are specialized devices designed to provide extra layers of cryptographic security.  

By rolling out these quantum-resistant digital signatures, Google Cloud is giving customers the opportunity to test PQC algorithms in Cloud KMS and provide feedback on their performance and integration. This allows businesses to prepare for a post-quantum future, ensuring their data remains secure even as computing power evolves. 

Google Cloud sees this initiative as a crucial first step toward a fully quantum-resistant cloud ecosystem, demonstrating its dedication to staying ahead of emerging cybersecurity challenges.

User Tracking: Google to Store User Data for 180 Days

User Tracking: Google Announces to Store User Data for 180 Days

Google has made a major change in its user tracking, a big leap in privacy concerns for users. Google will stop the nosy cloud storage of data it gets from tracking user location in real time. 

The privacy change

Called Google Maps Timeline, from December, Google will save user location data for a maximum of 180 days. After the duration ends, the data will be erased from Google Cloud servers. 

The new policy means Google can only save a user’s movements and whereabouts for 6 months, the user has an option to store the data on a personal device, but the cloud data will be permanently deleted from Google servers.

The new privacy change is welcomed, smartphones can balance privacy and convenience in terms of data storage, but nothing is more important than location data

Users can change settings that suit them best, but the majority go with default settings. The problem here arises when Google uses user data for suggesting insights (based on anonymous location data), or improving Google services like ads products.

Why important 

The Google Maps Timeline feature addresses questions about data privacy and security. The good things include:

Better privacy: By restricting the storage timeline of location data on the cloud, Google can reduce data misuse. Limiting the storage duration means less historical data is exposed to threat actors if there's a breach.

More control to users: When users have the option to retain location data on their devices, it gives them ownership over their personal data. Users can choose whether to delete their location history or keep the data.

Accountability from Google: The move is a positive sign toward building transparency and trust, showing a commitment to user privacy. 

How will it impact users?

Services: Google features that use location history data for tailored suggestions might be impacted, and users may observe changes in correct location-based suggestions and targeted ads. 

The problem in data recovery: For users who like to store their data for a longer duration, the new move can be a problem. Users will have to self-back up data if they want to keep it for more than 180 days. 

The Rise of Manual Techniques in Ransomware Attacks: A Growing Threat

The Rise of Manual Techniques in Ransomware Attacks: A Growing Threat

A recent report by CrowdStrike observes on a disturbing trend: the increasing use of manual techniques in ransomware attacks. This shift towards hands-on-keyboard activities is not only making these attacks more sophisticated but also more challenging to detect and mitigate.

The Surge in Interactive Intrusions

According to CrowdStrike’s findings, there has been a staggering 55% increase in interactive intrusions over the past year. These intrusions, characterized by direct human involvement rather than automated scripts, account for nearly 90% of e-crime activities. This trend underscores a critical shift in the tactics employed by cybercriminals, who are now leveraging manual techniques to bypass traditional security measures and achieve their malicious objectives.

Why Manual Techniques?

The adoption of manual techniques in ransomware attacks offers several advantages to cybercriminals. Firstly, these techniques allow attackers to adapt and respond in real-time to the defenses they encounter. Unlike automated attacks, which follow predefined scripts, manual intrusions enable attackers to think on their feet, making it harder for security systems to predict and counter their moves.

Secondly, manual techniques often involve the use of legitimate tools and credentials, making it difficult for security teams to distinguish between malicious and benign activities. This tactic, known as “living off the land,” involves using tools that are already present in the target environment, such as PowerShell or Remote Desktop Protocol (RDP). By blending in with normal network traffic, attackers can evade detection for extended periods, increasing the likelihood of a successful attack.

The Impact on the Technology Sector

The technology sector has been particularly hard-hit by this surge in manual ransomware attacks. CrowdStrike’s report indicates a 60% rise in such attacks targeting tech companies. This sector is an attractive target for cybercriminals due to its vast repositories of sensitive data and intellectual property. Additionally, technology companies often have complex and interconnected systems, providing multiple entry points for attackers to exploit.

The consequences of a successful ransomware attack on a tech company can be devastating. Beyond the immediate financial losses from ransom payments, these attacks can lead to prolonged downtime, loss of customer trust, and significant reputational damage. In some cases, the recovery process can take months, further compounding the financial and operational impact.

What to do?

Enhanced Monitoring and Detection: Implement advanced monitoring tools that can detect anomalous behavior indicative of manual intrusions. Behavioural analytics and machine learning can help identify patterns that deviate from the norm, providing early warning signs of an attack.

Regular Security Training: Educate employees about the latest phishing techniques and social engineering tactics used by cybercriminals. Regular training sessions can help staff recognize and report suspicious activities, reducing the risk of initial compromise.

Zero Trust Architecture: Adopt a Zero Trust approach to security, where no user or device is trusted by default. Implement strict access controls and continuously verify the identity and integrity of users and devices accessing the network.

Incident Response Planning: Develop and regularly update an incident response plan that outlines the steps to take in the event of a ransomware attack. Conduct regular drills to ensure that all team members are familiar with their roles and responsibilities during an incident.

Backup and Recovery: Maintain regular backups of critical data and ensure that these backups are stored securely and inaccessible from the main network. Regularly test the recovery process to ensure that data can be restored quickly in the event of an attack.

Moroccan Cybercrime Group Storm-0539 Exploits Gift Card Systems with Advanced Phishing Attacks

 

A Morocco-based cybercrime group, Storm-0539, is making headlines for its sophisticated email and SMS phishing attacks aimed at stealing and reselling gift cards. Microsoft's latest Cyber Signals report reveals that this group is responsible for significant financial theft, with some companies losing up to $100,000 daily. 

First identified by Microsoft in December 2023, Storm-0539, also known as Atlas Lion, has been active since late 2021. The group employs social engineering techniques to harvest victims' credentials through adversary-in-the-middle (AitM) phishing pages. They exploit this access to register their own devices, bypass authentication, and maintain persistent access to create fraudulent gift cards. 

The group's attack strategy includes gaining covert access to cloud environments for extensive reconnaissance, targeting large retailers, luxury brands, and fast-food chains. They aim to redeem and sell gift cards on black markets or use money mules to cash out. This marks an evolution from their previous tactics of stealing payment card data via malware on point-of-sale (PoS) devices. 

Microsoft noted a 30% increase in Storm-0539's activities between March and May 2024, emphasizing their deep understanding of cloud systems to manipulate gift card issuance processes. In addition to stealing login credentials, Storm-0539 targets secure shell (SSH) passwords and keys, which are either sold or used for further attacks. The group uses internal company mailing lists to send phishing emails, enhancing their credibility and sets up new phishing websites by exploiting free trial or student accounts on cloud platforms. 

The FBI has warned about Storm-0539's smishing attacks on retail gift card departments, using sophisticated phishing kits to bypass multi-factor authentication (MFA). The group's ability to adapt and pivot tactics after detection underscores their persistence and resourcefulness. Microsoft urges companies to monitor gift card portals closely and implement conditional access policies to strengthen security. They highlight the effectiveness of using additional identity-driven signals, such as IP address and device status, alongside MFA. 

Meanwhile, Enea researchers have identified broader criminal campaigns exploiting cloud storage services like Amazon S3 and Google Cloud Storage for SMS-based gift card scams. These scams use legitimate-looking URLs to bypass firewalls and redirect users to malicious websites that steal sensitive information. 

Storm-0539's operations exemplify the increasing sophistication of financially motivated cybercriminals, borrowing techniques from state-sponsored actors to remain undetected. As these threats evolve, robust cybersecurity measures and vigilant monitoring are crucial to protect sensitive information and financial assets.

Empowering Indigenous Data Sovereignty: The TTP-Microsoft Partnership

 

The recent partnership between Te Tumu Paeroa (TTP), the office of the Māori Trustee, and Microsoft for the forthcoming data centres in Aotearoa New Zealand marks a groundbreaking development with potential global implications for indigenous data sovereignty. This agreement, described as "groundbreaking," is based on TTP's Māori data sovereignty framework, which has been under development for the past three years. 

As anchor tenants for Microsoft's data centres, TTP will play a pivotal role in safeguarding Māori data as a precious asset in an increasingly digital world. Ruth Russell, Te Tumu Paeroa’s Kaitautari Pārongo Matua (Chief Information Officer), emphasized the significance of protecting Māori data, describing it as a "taonga" or treasure. Anchor tenancy enables TTP to host data in Aotearoa, ensuring it remains within the country's sovereign borders. 

The agreement aims to deepen connections between landowners and their whenua (land) and facilitate faster recovery from major weather events while supporting innovation on key issues such as climate change. TTP's services include trust administration, property management, income distribution, and client fund management, making this partnership crucial for enhancing Māori data sovereignty. One of the primary benefits of the new cloud service is that data stored at the centre will not leave New Zealand's sovereign borders, ensuring compliance with local laws and regulations. 

This advanced data residency feature offered by Microsoft instills confidence that data resides in the desired territory, aligning with TTP's framework and recognizing the sovereignty of Māori data. Dan Te Whenua Walker from Microsoft highlights the opportunity for Māori to leverage artificial intelligence (AI) while acknowledging some uncertainties regarding its cultural implications. He emphasizes the importance of TTP's framework in guiding the adoption of AI, ensuring it aligns with Māori aspirations and values. DDS IT, responsible for migrating data to Microsoft's cloud servers, considers this partnership a unique opportunity. The data migration process involves transferring data between locations and formats, with the full transfer expected to take between 12 to 24 months. 

Moreover, the new data centre is set to be the most sustainable globally, emphasizing energy efficiency and environmental considerations. The partnership between TTP and Microsoft represents a significant step towards advancing Māori data sovereignty and leveraging technology to benefit indigenous communities. By hosting data within Aotearoa's sovereign borders and adhering to Māori principles of kaitiakitanga (guardianship), this collaboration sets a precedent for indigenous data governance worldwide.

Bridging the Gap Between Cloud vs On-premise Security

 

In the current landscape, the prevalence of the cloud era is undeniable, and the market is characterized by constant dynamism. Enterprises, in order to maintain relevance amid this competitive environment, are unmistakably demonstrating a keen interest in embracing cloud technologies. What motivates this significant shift? 

Cloud-centric security strategies, exemplified by initiatives like Secure Access Service Edge (SASE) and Security Service Edge (SSE), encompassing components such as Secure Web Gateway (SWG), Cloud Access Security Brokers (CASB), Data Loss Prevention (DLP), and Zero Trust Network Access (ZTNA), efficiently extend security to wherever corporate users, devices, and resources are located—leveraging the cloud as the central hub. 

With all security functionalities seamlessly delivered and managed through a unified interface, the security of both inbound and outbound traffic, often referred to as north-south traffic, is significantly fortified. 

On the flip side, the internal network's east-west traffic, which moves within the confines of data centers and the network but does not cross the network perimeter, remains untouched by the security checks implemented through cloud-based measures. 

A potential workaround involves keeping a traditional data center firewall dedicated to overseeing and regulating internal, east-west traffic. However, this hybrid security approach introduces increased expenses and intricacies in handling diverse security solutions. Many organizations strive to address these challenges by opting for integrated, cloud-based security stacks to streamline management and mitigate the complexities associated with maintaining separate security measures. 

To ensure comprehensive security coverage for organizations, a solution is required that safeguards both north-south and east-west traffic. The key lies in orchestration through a centralized, cloud-based console. Achieving this can be approached in two ways: 

1. Via WAN Firewall Policy 

Cloud-native security frameworks like SASE and SSE can provide east-west protection by directing internal traffic through the nearest point of presence (PoP). Unlike traditional local firewalls with their own setup limitations, SSE PoP allows firewall policies to be managed centrally through the platform's console. Admins can easily create access rules in the unified console, such as permitting authorized users on the corporate VLAN with approved, Active Directory-registered devices to access specific resources in the on-premise data center, following Zero Trust Network Access (ZTNA) principles. 

2. Via LAN Firewall Policy 

In a security-conscious scenario, where an IoT VLAN's CCTV camera needs access to an internal server, disabling default internet/WAN access is wise to prevent cyber threats. Implementing data center firewall policies at the Point of Presence (PoP) may not affect devices like IoT cameras with no internet access. 

SASE and SSE platforms address this by empowering administrators to set firewall policies on the local SD-WAN device. Organizations connect to SASE/SSE PoPs through this SD-WAN device, allowing direct rule configuration for internal LAN traffic. Pre-defined LAN firewall policies are locally enforced, with unmatched traffic sent to the PoP for further assessment, enhancing security management efficiency.

Vietnamese Cybercriminals Exploit Malvertising to Target Facebook Business Accounts

Cybercriminals associated with the Vietnamese cybercrime ecosystem are exploiting social media platforms, including Meta-owned Facebook, as a means to distribute malware. 

According to Mohammad Kazem Hassan Nejad, a researcher from WithSecure, malicious actors have been utilizing deceptive ads to target victims with various scams and malvertising schemes. This tactic has become even more lucrative with businesses increasingly using social media for advertising, providing attackers with a new type of attack vector – hijacking business accounts.

Over the past year, cyber attacks against Meta Business and Facebook accounts have gained popularity, primarily driven by activity clusters like Ducktail and NodeStealer, known for targeting businesses and individuals operating on Facebook. 

Social engineering plays a crucial role in gaining unauthorized access to user accounts, with victims being approached through platforms such as Facebook, LinkedIn, WhatsApp, and freelance job portals like Upwork. Search engine poisoning is another method employed to promote fake software, including CapCut, Notepad++, OpenAI ChatGPT, Google Bard, and Meta Threads.

Common tactics among these cybercrime groups include the misuse of URL shorteners, the use of Telegram for command-and-control (C2), and legitimate cloud services like Trello, Discord, Dropbox, iCloud, OneDrive, and Mediafire to host malicious payloads.

Ducktail, for instance, employs lures related to branding and marketing projects to infiltrate individuals and businesses on Meta's Business platform. In recent attacks, job and recruitment-related themes have been used to activate infections. 

Potential targets are directed to fraudulent job postings on platforms like Upwork and Freelancer through Facebook ads or LinkedIn InMail. These postings contain links to compromised job description files hosted on cloud storage providers, leading to the deployment of the Ducktail stealer malware.

The Ducktail malware is designed to steal saved session cookies from browsers, with specific code tailored to take over Facebook business accounts. These compromised accounts are sold on underground marketplaces, fetching prices ranging from $15 to $340.

Recent attack sequences observed between February and March 2023 involve the use of shortcut and PowerShell files to download and launch the final malware. The malware has evolved to harvest personal information from various platforms, including X (formerly Twitter), TikTok Business, and Google Ads. It also uses stolen Facebook session cookies to create fraudulent ads and gain elevated privileges.

One of the primary methods used to take over a victim's compromised account involves adding the attacker's email address, changing the password, and locking the victim out of their Facebook account.

The malware has incorporated new features, such as using RestartManager (RM) to kill processes that lock browser databases, a technique commonly found in ransomware. Additionally, the final payload is obfuscated using a loader to dynamically decrypt and execute it, making analysis and detection more challenging.

To hinder analysis efforts, the threat actors use uniquely generated assembly names and rely on SmartAssembly, bloating, and compression to obfuscate the malware.

Researchers from Zscaler also observed instances where the threat actors initiated contact using compromised LinkedIn accounts belonging to users in the digital marketing field, leveraging the authenticity of these accounts to aid in social engineering tactics. This highlights the worm-like propagation of Ducktail, where stolen LinkedIn credentials and cookies are used to log in to victims' accounts and expand their reach.

Ducktail is just one of many Vietnamese threat actors employing shared tools and tactics for fraudulent schemes. A Ducktail copycat known as Duckport, which emerged in late March 2023, engages in information stealing and Meta Business account hijacking. Notably, Duckport differs from Ducktail in terms of Telegram channels used for command and control, source code implementation, and distribution, making them distinct threats.

Duckport employs a unique technique of sending victims links to branded sites related to the impersonated brand or company, redirecting them to download malicious archives from file hosting services. Unlike Ducktail, Duckport replaces Telegram as a channel for passing commands to victims' machines and incorporates additional information stealing and account hijacking capabilities, along with taking screenshots and abusing online note-taking services as part of its command and control chain.

"The Vietnamese-centric element of these threats and high degree of overlaps in terms of capabilities, infrastructure, and victimology suggests active working relationships between various threat actors, shared tooling and TTPs across these threat groups, or a fractured and service-oriented Vietnamese cybercriminal ecosystem (akin to ransomware-as-a-service model) centered around social media platforms such as Facebook," WithSecure said.

Remote Work and the Cloud Create Various Endpoint Security Challenges

At the recent Syxsense Synergy event, cybersecurity experts delved into the ever-evolving challenges faced by security and endpoint management. With the increasing complexity of cloud technologies, advancements in the Internet of Things, and the widespread adoption of remote work, the landscape of cybersecurity has become more intricate than ever before. 

These experts shed light on the pressing issues surrounding this field. Based on a survey conducted by the Enterprise Strategy Group (ESG), it has been discovered that the average user presently possesses approximately seven devices for both personal and office use. 

Moreover, the ESG survey revealed a notable connection between the number of security and endpoint management tools employed within an enterprise and the frequency of breaches experienced. Among the organizations surveyed, 6% utilized fewer than five tools, while 27% employed 5 to 10 tools. 33% of organizations employed 11 to 15 tools, whereas the remaining organizations implemented more than 15 tools to manage their security and endpoints. 

Understand the concept of Endpoints and why their security is important while working remotely?

Endpoints encompass various physical devices that establish connections with computer networks, facilitating the exchange of information. These devices span a wide range, including mobile devices, desktop computers, virtual machines, embedded devices, and servers. 

Additionally, endpoints extend to Internet-of-Things (IoT) devices such as cameras, lighting systems, refrigerators, security systems, smart speakers, and thermostats. When a device establishes a network connection, the transmission of information between the device, such as a laptop, and the network can be linked to a conversation taking place between two individuals over a phone call. 

Endpoints are attractive targets for cybercriminals due to their vulnerability and their role as gateways to corporate data. As the workforce becomes more distributed, protecting endpoints has become increasingly challenging. Small businesses are particularly vulnerable, as they can serve as entry points for criminals to target larger organizations, often lacking robust cybersecurity defenses. 

Data breaches are financially devastating for enterprises, with the global average cost being $4.24 million and $9.05 million in the United States. Remote work-related breaches incur an additional average cost of $1.05 million. The majority of breach costs are attributed to lost business, including customer turnover, revenue loss from system downtime, and the expenses of rebuilding reputation and acquiring new customers. 

With the increasing mobility of workforces, organizations face a range of endpoint security risks. These common threats include: 

Phishing: A form of social engineering attack that manipulates individuals into divulging sensitive information. 

Ransomware: Malicious software that encrypts a victim's data and demands a ransom for its release.

Device loss: Leading to data breaches and potential regulatory penalties, lost or stolen devices pose significant risks to organizations. 

Outdated patches: Failure to apply timely software updates leaves systems vulnerable, enabling exploitation by malicious actors. 

Malware ads (malvertising): Online advertisements are used as a medium to distribute malware and compromise systems. 

Drive-by downloads: Automated downloads of software onto devices without the user's knowledge or consent. 

According to Ashley Leonard, Syxsense founder, and CEO, the biggest reason behind increasing challenges related to endpoint security is lack of training. “If people are not properly trained and grooved in on their endpoint and security tools, you are going to find devices and systems misconfigured, not maintained properly, and with critical patches undeployed. Training is vital, but it is much easier to train people on a single tool,” he further added.