Search This Blog

Powered by Blogger.

Blog Archive

Labels

Footer About

Footer About

Labels

Showing posts with label Cyber Security. Show all posts

AI Browsers Raise Privacy and Security Risks as Prompt Injection Attacks Grow

 

A new wave of competition is stirring in the browser market as companies like OpenAI, Perplexity, and The Browser Company aggressively push to redefine how humans interact with the web. Rather than merely displaying pages, these AI browsers will be engineered to reason, take action independently, and execute tasks on behalf of end users. At least four such products, including ChatGPT's Atlas, Perplexity's Comet, and The Browser Company's Dia, represent a transition reminiscent of the early browser wars, when Netscape and Internet Explorer battled to compete for a role in the shaping of the future of the Internet. 

Whereas the other browsers rely on search results and manual navigation, an AI browser is designed to understand natural language instructions and perform multi-step actions. For instance, a user can ask an AI browser to find a restaurant nearby, compare options, and make a reservation without the user opening the booking page themselves. In this context, the browser has to process both user instructions and the content of each of the webpages it accesses, intertwining decision-making with automation. 

But this capability also creates a serious security risk that's inherent in the way large language models work. AI systems cannot be sure whether a command comes from a trusted user or comes with general text on an untrusted web page. Malicious actors may now inject malicious instructions within webpages, which can include uses of invisible text, HTML comments, and image-based prompts. Unbeknownst to them, that might get processed by an AI browser along with the user's original request-a type of attack now called prompt injection. 

The consequence of such attacks could be dire, since AI browsers are designed to gain access to sensitive data in order to function effectively. Many ask for permission to emails, calendars, contacts, payment information, and browsing histories. If compromised, those very integrations become conduits for data exfiltration. Security researchers have shown just how prompt injections can trick AI browsers into forwarding emails, extracting stored credentials, making unauthorized purchases, or downloading malware without explicit user interaction. One such neat proof-of-concept was that of Perplexity's Comet browser, wherein the researchers had embedded command instructions in a Reddit comment, hidden behind a spoiler tag. When the browser arrived and was asked to summarise the page, it obediently followed the buried commands and tried to scrape email data. The user did nothing more than request a summary; passive interactions indeed are enough to get someone compromised. 

More recently, researchers detailed a method called HashJack, which abuses the way web browsers process URL fragments. Everything that appears after the “#” in a URL never actually makes it to the server of a given website and is only accessible to the browser. An attacker can embed nefarious commands in this fragment, and AI-powered browsers may read and act upon it without the hosting site detecting such commands. Researchers have already demonstrated that this method can make AI browsers show the wrong information, such as incorrect dosages of medication on well-known medical websites. Though vendors are experimenting with mitigations, such as reinforcement learning to detect suspicious prompts or restricting access during logged-out browsing sessions, these remain imperfect. 

The flexibility that makes AI browsers useful also makes them vulnerable. As the technology is still in development, it shows great convenience, but the security risks raise questions of whether fully trustworthy AI browsing is an unsolved problem.

Asus Supplier Breach Sparks Security Concerns After Everest Ransomware Claims Data Theft

 

Asus has confirmed a security breach via one of its third-party suppliers after the Everest ransomware group claimed it had accessed internal materials belonging to the company. In its statement, Asus confirmed that a supply chain vendor "was hacked," and the intrusion impacted portions of the source code relating to cameras for Asus smartphones. The company emphasized that no internal systems, products, or customer data were impacted. It refused to name the breached supplier or detail exactly what was accessed, but it said it is shoring up supply chain defenses to align with cybersecurity best practices. 

The disclosure comes amid brazen claims from the Everest ransomware gang, an established extortion outfit that has traditionally targeted major technology firms. Everest claimed it had pilfered around 1 TB of data related to Asus, ArcSoft, and Qualcomm, leaking screenshots online as evidence of the breach. The group said on its dark-web leak site that it was offering an array of deep technical assets, from segmentation modules to source code, RAM dumps, firmware tools, AI model weights, image datasets, crash logs, and test applications. The cache supposedly also contained calibration files, dual-camera data, internal test videos, and performance evaluation reports, the gang said. 

As it is, Asus hasn't verified the broader claims of Everest and has called the incident isolated to a single external supplier that holds camera-related resources. The company hasn't provided an explanation of whether material that was supposedly exfiltrated by the attackers included its proprietary code or information from the other organizations named by the group. Requests for additional comment from the manufacturer went unreturned, thus leaving various aspects of the breach unexplained. The timing is problematic for Asus, coming just weeks after new research highlighted yet another security issue with the company's consumer networking hardware. Analysts in recent weeks said about 50,000 Asus routers were compromised in what observers believe is a China-linked operation. 

That campaign involved attackers exploiting firmware vulnerabilities to build a relatively large botnet that's able to manipulate traffic and facilitate secondary infections. Although the router exploitation campaign and the supplier breach seem unrelated, taken together the two incidents raise the temperature on Asus' overall security posture. With attackers already targeting its networking devices en masse, the discovery of a supply chain intrusion-one that may have entailed access to source code-only adds to the questions about the robustness of the company's development environments. 

As supply chain compromises remain one of the biggest risks facing the tech sector, the incident serves as a reminder of the need for far better oversight, vetting of vendors, and continuous monitoring to ensure malicious actors do not penetrate upstream partners. For Asus, the breach raises pressure on the company to reassure customers and partners that its software and hardware ecosystems remain secure amid unrelenting global cyberthreat activity.

December Patch Tuesday Brings Critical Microsoft, Notepad++, Fortinet, and Ivanti Security Fixes

 


While December's Patch Tuesday gave us a lighter release than normal, it arrived with several urgent vulnerabilities that need attention immediately. In all, Microsoft released 57 CVE patches to finish out 2025, including one flaw already under active exploitation and two others that were publicly disclosed. Notably, critical security updates also came from Notepad++, Ivanti, and Fortinet this cycle, making it particularly important for system administrators and enterprise security teams alike. 

The most critical of Microsoft's disclosures this month is CVE-2025-62221, a Windows Cloud Files Mini Filter Driver bug rated 7.8 on the CVSS scale. It allows for privilege escalation: an attacker who has code execution rights can leverage the bug to escalate to full system-level access. Researchers say this kind of bug is exploited on a regular basis in real-world intrusions, and "patching ASAP" is critical. Microsoft hasn't disclosed yet which threat actors are actively exploiting this flaw; however, experts explain that bugs like these "tend to pop up in almost every big compromise and are often used as stepping stones to further breach". 

Another two disclosures from Microsoft were CVE-2025-54100 in PowerShell and CVE-2025-64671, impacting GitHub Copilot for JetBrains. Although these are not confirmed to be exploited, they were publicly disclosed ahead of patching. Graded at 8.4, the Copilot vulnerability would have allowed for remote code execution via malicious cross-prompt injection, provided a user is tricked into opening untrusted files or connecting to compromised servers. Security researchers expect more vulnerabilities of this type to emerge as AI-integrated development tools expand in usage. 

But one of the more ominous developments outside Microsoft belongs to Notepad++. The popular open-source editor pushed out version 8.8.9 to patch a weakness in the way updates were checked for authenticity. Attackers were managing to intercept network traffic from the WinGUp update client, then redirecting users to rogue servers, where malicious files were downloaded instead of legitimate updates. There are reports that threat groups in China were actively testing and exploiting this vulnerability. Indeed, according to the maintainer, "Due to the improper update integrity validation, an adversary was able to manipulate the download"; therefore, users should upgrade as soon as possible. 

Fortinet also patched two critical authentication bypass vulnerabilities, CVE-2025-59718 and CVE-2025-59719, in FortiOS and several related products. The bugs enable hackers to bypass FortiCloud SSO authentication using crafted SAML messages, which only works if SSO has been enabled. Administrators are advised to disable the feature until they can upgrade to patched builds to avoid unauthorized access. Rounding out the disclosures, Ivanti released a fix for CVE-2025-10573, a severe cross-site scripting vulnerability in its Endpoint Manager. The bug allows an attacker to register fake endpoints and inject malicious JavaScript into the administrator dashboard. Viewed, this could serve an attacker full control over the session without credentials. There has been no observed exploitation so far, but researchers warn that it is likely attackers will reverse engineer the fix soon, making for a deployment environment of haste.

UK Cyber Agency says AI Prompt-injection Attacks May Persist for Years

 



The United Kingdom’s National Cyber Security Centre has issued a strong warning about a spreading weakness in artificial intelligence systems, stating that prompt-injection attacks may never be fully solved. The agency explained that this risk is tied to the basic design of large language models, which read all text as part of a prediction sequence rather than separating instructions from ordinary content. Because of this, malicious actors can insert hidden text that causes a system to break its own rules or execute unintended actions.

The NCSC noted that this is not a theoretical concern. Several demonstrations have already shown how attackers can force AI models to reveal internal instructions or sensitive prompts, and other tests have suggested that tools used for coding, search, or even résumé screening can be manipulated by embedding concealed commands inside user-supplied text.

David C, a technical director at the NCSC, cautioned that treating prompt injection as a familiar software flaw is a mistake. He observed that many security professionals compare it to SQL injection, an older type of vulnerability that allowed criminals to send harmful instructions to databases by placing commands where data was expected. According to him, this comparison is dangerous because it encourages the belief that both problems can be fixed in similar ways, even though the underlying issues are completely different.

He illustrated this difference with a practical scenario. If a recruiter uses an AI system to filter applications, a job seeker could hide a message in the document that tells the model to ignore existing rules and approve the résumé. Since the model does not distinguish between what it should follow and what it should simply read, it may carry out the hidden instruction.

Researchers are trying to design protective techniques, including systems that attempt to detect suspicious text or training methods that help models recognise the difference between instructions and information. However, the agency emphasised that all these strategies are trying to impose a separation that the technology does not naturally have. Traditional solutions for similar problems, such as Confused Deputy vulnerabilities, do not translate well to language models, leaving large gaps in protection.

The agency also stressed upon a security idea recently shared on social media that attempted to restrict model behaviour. Even the creator of that proposal admitted that it would sharply reduce the abilities of AI systems, showing how complex and limiting effective safeguards may become.

The NCSC stated that prompt-injection threats are likely to remain a lasting challenge rather than a fixable flaw. The most realistic path is to reduce the chances of an attack or limit the damage it can cause through strict system design, thoughtful deployment, and careful day-to-day operation. The agency pointed to the history of SQL injection, which once caused widespread breaches until better security standards were adopted. With AI now being integrated into many applications, they warned that a similar wave of compromises could occur if organisations do not treat prompt injection as a serious and ongoing risk.


How Retailers Should Harden Accounts Before the Holiday Rush




Retailers rely heavily on the year-end shopping season, but it also happens to be the period when online threats rise faster than most organizations can respond. During the rush, digital systems handle far more traffic than usual, and internal teams operate under tighter timelines. This combination creates a perfect opening for attackers who intentionally prepare their campaigns weeks in advance and deploy automated tools when stores are at their busiest.

Security analysts consistently report that fraudulent bot traffic, password-testing attempts, and customer account intrusions grow sharply during the weeks surrounding Black Friday, festive sales, and year-end shopping events. Attackers time their operations carefully because the chance of slipping through undetected is higher when systems are strained and retailers are focused on maintaining performance rather than investigating anomalies.

A critical reason criminals favor this season is the widespread reuse of passwords. Large collections of leaked usernames and passwords circulate on criminal forums, and attackers use automated software to test these combinations across retail login pages. These tools can attempt thousands of logins per minute. When one match succeeds, the attacker gains access to stored payment information, saved addresses, shopping histories, loyalty points, and in some cases stored tokenized payment methods. All of these can be exploited immediately, which makes the attack both low-effort and highly profitable.

Another layer of risk arises from the credentials of external partners. Many retailers depend on vendors for services ranging from maintenance to inventory support, which means third-party accounts often hold access to internal systems. Past retail breaches have shown that attackers frequently begin their intrusion not through the company itself but through a partner whose login rights were not secured with strong authentication or strict access controls. This amplifies the impact far beyond a single compromised account, highlighting the need for retailers to treat vendor and contractor credentials with the same seriousness as internal workforce accounts.

Balancing security with customer experience becomes especially challenging during peak seasons. Retailers cannot introduce so much friction that shoppers abandon their carts, yet they also cannot ignore the fact that most account takeovers begin with weak, reused, or compromised passwords.

Modern authentication frameworks recommend focusing on password length, screening new passwords against known breach data, and reducing reliance on outdated complexity rules that frustrate users without meaningfully improving security. Adaptive multi-factor authentication is viewed as the most practical solution. It triggers an additional verification step only when something unusual is detected, such as a login from an unfamiliar device, a significant change to account settings, or a suspicious location. This approach strengthens security without slowing down legitimate customers.

Internal systems require equal attention. Administrative dashboards, point-of-sale backends, vendor portals, and remote-access platforms usually hold higher levels of authority, which means they must follow a stricter standard. Mandatory MFA, centralized identity management, unique employee credentials, and secure vaulting of privileged passwords significantly reduce the blast radius of any single compromised account.

Holiday preparedness also requires a layered approach to blocking automated abuse. Retailers can deploy tools that differentiate real human activity from bots by studying device behavior, interaction patterns, and risk signals. Rate limits, behavioral monitoring for credential stuffing, and intelligence-based blocking of known malicious sources help limit abuse without overwhelming the customer experience. Invisible or background challenge mechanisms are often more effective than traditional CAPTCHAs, which can hinder sales during peak traffic.

A final but critical aspect of resilience is operational continuity. Authentication providers, SMS delivery routes, and verification systems can fail under heavy demand, and outages during peak shopping hours can have direct financial consequences. Retailers should run rehearsals before the season begins, including testing failover paths for sign-in systems, defining emergency access methods that are short-lived and fully auditable, and ensuring there is a manual verification process that stores can rely on if digital systems lag or fail. Running load tests and tabletop exercises helps confirm that backup procedures will hold under real stress.

Strengthening password policies and monitoring for compromised credentials also plays a vital role. Tools that enforce password screenings against known breach databases, encourage passphrases, restrict predictable patterns, and integrate directly with directory services allow retailers to apply consistent controls across both customer-facing and internal systems. Telemetry from these tools can reveal early signs of suspicious behavior, providing opportunities to intervene before attackers escalate their actions.

With attackers preparing earlier each year and using highly automated methods, retailers must enter the holiday season with defenses that are both proactive and adaptable. By tightening access controls, reinforcing authentication, preparing for system failures, and using layered detection methods, retailers can significantly reduce the likelihood of account takeovers and fraud, all while maintaining smooth and reliable shopping experiences for their customers.


AI IDE Security Flaws Exposed: Over 30 Vulnerabilities Highlight Risks in Autonomous Coding Tools

 

More than 30 security weaknesses in various AI-powered IDEs have recently been uncovered, raising concerns as to how emerging automated development tools might unintentionally expose sensitive data or enable remote code execution. A collective set of vulnerabilities, referred to as IDEsaster, was termed by security researcher Ari Marzouk (MaccariTA), who found that such popular tools and extensions as Cursor, Windsurf, Zed.dev, Roo Code, GitHub Copilot, Claude Code, and others were vulnerable to attack chains leveraging prompt injection and built-in functionalities of the IDEs. At least 24 of them have already received a CVE identifier, which speaks to their criticality. 

However, the most surprising takeaway, according to Marzouk, is how consistently the same attack patterns could be replicated across every AI IDE they examined. Most AI-assisted coding platforms, the researcher said, don't consider the underlying IDE tools within their security boundaries but rather treat long-standing features as inherently safe. But once autonomous AI agents can trigger them without user approval, the same trusted functions can be repurposed for leaking data or executing malicious commands. 

Generally, the core of each exploit chain starts with prompt injection techniques that allow an attacker to redirect the large language model's context and behavior. Once the context is compromised, an AI agent might automatically execute instructions, such as reading files, modifying configuration settings, or writing new data, without the explicit consent of the user. Various documented cases showed how these capabilities could eventually lead to sensitive information disclosure or full remote code execution on a developer's system. Some vulnerabilities relied on workspaces being configured for automatic approval of file writes; thus, in practice, an attacker influencing a prompt could trigger code-altering actions without any human interaction. 

Researchers also pointed out that prompt injection vectors may be obfuscated in non-obvious ways, such as invisible Unicode characters, poisoned context originating from Model Context Protocol servers, or malicious file references added by developers who may not suspect a thing. Wider concerns emerged when new weaknesses were identified in widely deployed AI development tools from major companies including OpenAI, Google, and GitHub. 

As autonomous coding agents see continued adoption in the enterprise, experts warn these findings demonstrate how AI tools significantly expand the attack surface of development workflows. Rein Daelman, a researcher at Aikido, said any repository leveraging AI for automation tasks-from pull request labeling to code recommendations-may be vulnerable to compromise, data theft, or supply chain manipulation. Marzouk added that the industry needs to adopt what he calls Secure for AI, meaning systems are designed with intentionality to resist the emerging risks tied to AI-powered automation, rather than predicated on software security assumptions.

Palo Alto GlobalProtect Portals Face Spike in Suspicious Login Attempts

 


Among the developments that have disturbed security teams around the world, threat-intelligence analysts have detected a sudden and unusually coordinated wave of probing of Palo Alto Networks' GlobalProtect remote access infrastructure. This activity appears to be influenced by the presence of well-known malicious fingerprints and well-worn attack mechanisms.

It has been revealed in new reports from GreyNoise that the surge began on November 14 and escalated sharply until early December, culminating in more than 7,000 unique IP addresses trying to log into GlobalProtect portals through the firm's Global Observation Grid monitored by GlobalProtect. This influx of hostile activity has grown to the highest level in 90 days and has prompted fresh concerns among those defending the computer system from attempts to hack themselves, who are watching for signs that such reconnaissance is likely to lead to a significant breach of their system. 

In general, the activity stems mostly from infrastructure that operates under the name 3xK GmbH (AS200373), which accounts for approximately 2.3 million sessions which were directed to the global-protect/login.esp endpoint used by Palo Alto's PAN-OS and GlobalProtect products. The data was reported by GreyNoise to reveal that 62 percent of the traffic was geolocated in Germany, with 15 percent being traced to Canada. 

In parallel, AS208885 contributed a steady stream of probing throughout the entire network. As a result of early analysis, it is clear that this campaign requires continuity with prior malicious campaigns that targeted Palo Alto equipment, showing that recurring TCP patterns were used, repeated JA4T signatures were seen, and that infrastructure associated with known threat actors was reused. 

Despite the fact that the scans were conducted mainly in the United States, Mexico, and Pakistan regions, all of them were subjected to a comparable level of pressure, which suggested a broad, opportunistic approach as opposed to a narrowly targeted campaign, and served as a stark reminder of the persistent attention adversaries pay to remote-access technologies that are widely deployed. 

There has been a recent increase in the activity of this campaign, which is closely related to the pattern that was first observed between late September and mid-October, when three distinct fingerprints were detected among more than nine million nonspoofable HTTP sessions, primarily directed towards GlobalProtect portals, in an effort to track the attacks. 

There is enough technical overlap between four autonomous systems that originate those earlier scans to raise early suspicion, even though they had no prior history of malicious behavior. At the end of November, however, the same signatures resurfaced from 3xK Tech GmbH’s infrastructure in a concentrated burst. This event generated about 2.3 million sessions using identical TCP and JA4t indicators, with the majority of the traffic coming from IP addresses located in Germany. 

In the present, GreyNoise is highly confident that both phases of activity are associated with a single threat actor. It has now been reported that fingerprints of the attackers have reapplied on December 3, this time in probing attempts against SonicWall's SonicOS API, suggesting more than a product-specific reconnaissance campaign, but a more general reconnaissance sweep across widely deployed perimeter technologies. According to security analysts, GlobalProtect remains a high-profile target because of its deep penetration into enterprise networks and its history of high-impact vulnerabilities. 

It is important to note, however, that CVE-2024-3400 is still affecting unremedied systems despite being patched in April 2024 with a 9.8 rating due to a critical command-injection flaw, CVE-2024-3400. During recent attacks, malicious actors have used pre-authentication access as a tool for enumerating endpoints, brute-forcing credentials, and deploying malware to persist by exploiting misconfigurations that allow pre-authentication access, such as exposed administrative portals and unchanged default credentials. 

They have also developed custom tools modeled on well-known exploitation frameworks. Although researchers caution that no definitive attribution has been established for the current surge of activity, Mandiant has observed the same methods being used by Chinese state-related groups like UNC4841 in operations linked to those groups. A number of indicators of confirmed intrusions have included sudden spikes in UDP traffic to port 4501, followed by HTTP requests to "/global-protect/login.urd," from which attackers have harvested session tokens and gotten deeper into victim environments by harvesting session tokens.

According to a Palo Alto Networks advisory dated December 5, administrators are urged to harden exposed portals with multi-factor authentication, tighten firewall restrictions, and install all outstanding patches, but noted that properly configured deployments remain resilient despite the increased scrutiny. Since then, CISA has made it clear that appropriate indicators have been added to its Catalog of Known Exploited Vulnerabilities and that federal agencies must fix any issues within 72 hours. 

The latest surge in malicious attacks represents a stark reminder of how quickly opportunistic reconnaissance can escalate into compromise when foundational controls are neglected, so organizations should prepare for the possibility of follow-on attacks. Security experts have highlighted that these recent incidents serve as a warning to organizations about potential follow-on attacks. A number of security experts advise organizations to adopt a more disciplined hardening strategy rather than rely on reactive patching, which includes monitoring the attack surface continuously, checking identity policies regularly, and segmenting all remote access paths as strictly as possible. 

According to analysts, defenders could also benefit from closer alignment between security operations teams and network administrators in order to keep an eye on anomalous traffic spikes or repeated fingerprint patterns and escalate them before they become operationally relevant. Researchers demonstrate the importance of sharing indicators early and widely, particularly among organizations that operate internet-facing VPN frameworks, as attackers have become increasingly adept at recycling infrastructure, tooling, and products across many different product families. 

Even though GlobalProtect and similar platforms are generally secure if they are configured correctly, recent scan activity highlights a broader truth that is not obvious. In order to remain resilient to adversaries who are intent on exploiting even the slightest crack in perimeter defenses, sustained vigilance, timely remediation, and a culture of proactive security hygiene remain the most effective barriers.

NATO Concludes Cyber Coalition Exercise in Estonia, Preparing for Future Digital Threats

 

NATO has wrapped up its annual Cyber Coalition exercise in Estonia after a week of intensive drills focused on protecting networks and critical infrastructure from advanced cyberattacks. 

More than 1,300 cyber defenders joined the 2025 exercise. Participants represented 29 NATO countries, 7 partner nations, as well as Austria, Georgia, Ireland, Japan, South Korea, Switzerland, Ukraine, the European Union, industry experts, and universities. 

The goal of the training was to strengthen cooperation and improve the ability to detect, deter, and respond to cyber threats that could affect military and civilian systems. 

Commander Brian Caplan, the Exercise Director, said that Cyber Coalition brings countries together to learn how they would operate during a cyber crisis. He highlighted that cyber threats do not stay within borders and that sharing information is key to improving global defence. 

This year’s exercise presented seven complex scenarios that mirrored real-world challenges. They included attacks on critical national infrastructure, cyber disruptions linked to space systems, and a scenario called “Ghost in the Backup,” which involved hidden malware inside sensitive data repositories. 

Multiple simulated threat actors carried out coordinated digital operations against a NATO mission. The drills required participants to communicate continuously, share intelligence, and use systems such as the Virtual Cyber Incident Support Capability. 

The exercise also tested the ability of teams to make difficult decisions. Participants had to identify early warning signs like delayed satellite data, irregular energy distribution logs, and unexpected power grid alerts. They were also challenged to decide when to escalate issues to civilian authorities or NATO headquarters and how to follow international law when sharing military intelligence with law enforcement. 

A British officer taking part in the event said cyber warfare is no longer limited to watching computers. Participants must also track information shared by media and social networks, including sources that may be run by hostile groups.

Over the years, Cyber Coalition has evolved based on new technologies, new policies, and new threats. According to Commander Caplan, the exercise helps NATO and its partners adjust together before a real crisis takes place. 

Cyber defence is now a major pillar in NATO’s training efforts. Leaders say large-scale drills like Cyber Coalition are necessary as cyber threats continue to grow in both sophistication and frequency.