Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Encryption. Show all posts

Encryption Under Siege: A New Wave of Attacks Intensifies

 

Over the past decade, encrypted communication has become a standard for billions worldwide. Platforms like Signal, iMessage, and WhatsApp use default end-to-end encryption, ensuring user privacy. Despite widespread adoption, governments continue pushing for greater access, threatening encryption’s integrity.

Recently, authorities in the UK, France, and Sweden have introduced policies that could weaken encryption, adding to EU and Indian regulatory measures that challenge privacy. Meanwhile, US intelligence agencies, previously critical of encryption, now advocate for its use after major cybersecurity breaches. The shift follows an incident where the China-backed hacking group Salt Typhoon infiltrated US telecom networks. Simultaneously, the second Trump administration is expanding surveillance of undocumented migrants and reassessing intelligence-sharing agreements.

“The trend is bleak,” says Carmela Troncoso, privacy and cryptography researcher at the Max-Planck Institute for Security and Privacy. “New policies are emerging that undermine encryption.”

Law enforcement argues encryption obstructs criminal investigations, leading governments to demand backdoor access to encrypted platforms. Experts warn such access could be exploited by malicious actors, jeopardizing security. Apple, for example, recently withdrew its encrypted iCloud backup system from the UK after receiving a secret government order. The company’s compliance would require creating a backdoor, a move expected to be challenged in court on March 14. Similarly, Sweden is considering laws requiring messaging services like Signal and WhatsApp to retain message copies for law enforcement access, prompting Signal to threaten market exit.

“Some democracies are reverting to crude approaches to circumvent encryption,” says Callum Voge, director of governmental affairs at the Internet Society.

A growing concern is client-side scanning, a technology that scans messages on users’ devices before encryption. While presented as a compromise, experts argue it introduces vulnerabilities. The EU has debated its implementation for years, with some member states advocating stronger encryption while others push for increased surveillance. Apple abandoned a similar initiative after warning that scanning for one type of content could pave the way for mass surveillance.

“Europe is divided, with some countries strongly in favor of scanning and others strongly against it,” says Voge.

Another pressing threat is the potential banning of encrypted services. Russia blocked Signal in 2024, while India’s legal battle with WhatsApp could force the platform to abandon encryption or exit the market. The country has already prohibited multiple VPN services, further limiting digital privacy options.

Despite mounting threats, pro-encryption responses have emerged. The US Cybersecurity and Infrastructure Security Agency and the FBI have urged encrypted communication use following recent cybersecurity breaches. Sweden’s armed forces also endorse Signal for unclassified communications, recognizing its security benefits.

With the UK’s March 14 legal proceedings over Apple’s backdoor request approaching, US senators and privacy organizations are demanding greater transparency. UK civil rights groups are challenging the confidential nature of such surveillance orders.

“The UK government may have come for Apple today, but tomorrow it could be Google, Microsoft, or even your VPN provider,” warns Privacy International.

Encryption remains fundamental to human rights, safeguarding free speech, secure communication, and data privacy. “Encryption is crucial because it enables a full spectrum of human rights,” says Namrata Maheshwari of Access Now. “It supports privacy, freedom of expression, organization, and association.”

As governments push for greater surveillance, the fight for encryption and privacy continues, shaping the future of digital security worldwide.


Thousands of iOS Apps Expose Sensitive Data Through Hardcoded Secrets, Researchers Warn

 

Cybersecurity researchers have uncovered alarming vulnerabilities in thousands of iOS applications, revealing that hardcoded secrets in their code have put users' sensitive information at risk.

A recent analysis by Cybernews examined over 156,000 iOS apps and detected more than 815,000 hardcoded secrets—some of which are highly sensitive and could potentially lead to security breaches or data leaks.

The term "secret" broadly refers to sensitive credentials like API keys, passwords, and encryption keys. These are often embedded directly into an app’s source code for convenience during development, but developers sometimes fail to remove them before release. According to Cybernews, the average iOS app exposes 5.2 secrets, and 71% of apps contain at least one leaked credential.

While some of these hardcoded secrets pose minimal risk, the report highlights serious threats. Researchers identified over 83,000 cloud storage endpoints, with 836 exposed without authentication, potentially leaking more than 400TB of data. Additionally, 51,000 Firebase endpoints were discovered, thousands of which were accessible to outsiders. Other exposed credentials include API keys for platforms like Fabric API, Live Branch, and MobApp Creator.

Among the most critical findings were 19 hardcoded Stripe secret keys, which directly control financial transactions. Cybernews researchers emphasized the severity of this issue, stating: “Stripe is widely used by e-commerce and even fintech companies to handle online payments.”

This vulnerability could allow cybercriminals to manipulate transactions or gain unauthorized access to payment infrastructure.

The findings challenge the common belief that iOS apps offer stronger security compared to other platforms.

“Many people believe that iOS apps are more secure and less likely to contain malware. However, our research shows that many apps in the ecosystem contain easily accessible hardcoded credentials. We followed the trail and found open databases with personal data and accessible infrastructure,” said Aras Nazarovas, a security researcher at Cybernews.

This study underscores the importance of secure coding practices and urges developers to adopt better security protocols to prevent data breaches and unauthorized access.


Hawcx Aims to Solve Passkey Challenges with Passwordless Authentication

 


Passwords remain a staple of online security, despite their vulnerabilities. According to Verizon, nearly one-third of all reported data breaches in the past decade resulted from stolen credentials, including some of the largest cyberattacks in history.  

In response, the tech industry has championed passkeys as a superior alternative to passwords. Over 15 billion accounts now support passkey technology, with major companies such as Amazon, Apple, Google, and Microsoft driving adoption.

However, widespread adoption remains sluggish due to concerns about portability and usability. Many users find passkeys cumbersome, particularly when managing access across multiple devices.

Cybersecurity startup Hawcx is addressing these passkey limitations with its innovative authentication technology. By eliminating key storage and transmission issues, Hawcx enhances security while improving usability.

Users often struggle with passkey setup and access across devices, leading to account lockouts and costly recovery—a significant challenge for businesses. As Dan Goodin of Ars Technica highlights, while passkeys offer enhanced security, their complexity can introduce operational inefficiencies at scale.

Hawcx, founded in 2023 by Riya Shanmugam (formerly of Adobe, Google, and New Relic), along with Selva Kumaraswamy and Ravi Ramaraju, offers a platform-agnostic solution. Developers can integrate its passwordless authentication by adding just five lines of code.

Unlike traditional passkeys, Hawcx does not store or transmit private keys. Instead, it cryptographically generates private keys each time a user logs in. This method ensures compatibility with older devices that lack modern hardware for passkey support.

“We are not reinventing the wheel fundamentally in most of the processes we have built,” Shanmugam told TechCrunch.

If a user switches devices, Hawcx’s system verifies authenticity before granting access, without storing additional private keys on the new device or in the cloud. This approach differs from standard passkeys, which require syncing private keys across devices or through cloud services.

“No one is challenging beyond the foundation,” Shanmugam said. “What we are challenging is the foundation itself. We are not building on top of what passkeys as a protocol provides. We are saying this protocol comes with an insane amount of limitations for users, enterprises, and developers, and we can make it better.”

Although Hawcx has filed patents, its technology has yet to be widely deployed or independently validated—factors that could influence industry trust. However, the company recently secured $3 million in pre-seed funding from Engineering Capital and Boldcap to accelerate development and market entry.

Shanmugam revealed that Hawcx is in talks with major banks and gaming companies for pilot programs set to launch in the coming weeks. These trials, expected to run for three to six months, will help refine the technology before broader implementation. Additionally, the startup is working with cryptography experts from Stanford University to validate its approach.

“As we are rolling out passkeys, the adoption is low. It’s clear to me that as good as passkeys are and they have solved the security problem, the usability problem still remains,” Tushar Phondge, director of consumer identity at ADP, told TechCrunch.

ADP plans to pilot Hawcx’s solution to assess its effectiveness in addressing passkey-related challenges, such as device dependency and system lockups.

Looking ahead, Hawcx aims to expand its authentication platform by integrating additional security services, including document verification, live video authentication, and background checks.

Frances Proposes Law Requiring Tech Companies to Provide Encrypted Data


Law demanding companies to provide encrypted data

New proposals in the French Parliament will mandate tech companies to give decrypted messages, email. If businesses don’t comply, heavy fines will be imposed.

France has proposed a law requiring end-to-end encryption messaging apps like WhatsApp and Signal, and encrypted email services like Proton Mail to give law enforcement agencies access to decrypted data on demand. 

The move comes after France’s proposed “Narcotraffic” bill, asking tech companies to hand over encrypted chats of suspected criminals within 72 hours. 

The law has stirred debates in the tech community and civil society groups because it may lead to building of “backdoors” in encrypted devices that can be abused by threat actors and state-sponsored criminals.

Individuals failing to comply will face fines of €1.5m and companies may lose up to 2% of their annual world turnover in case they are not able to hand over encrypted communications to the government.

Criminals will exploit backdoors

Few experts believe it is not possible to bring backdoors into encrypted communications without weakening their security. 

According to Computer Weekly’s report, Matthias Pfau, CEO of Tuta Mail, a German encrypted mail provider, said, “A backdoor for the good guys only is a dangerous illusion. Weakening encryption for law enforcement inevitably creates vulnerabilities that can – and will – be exploited by cyber criminals and hostile foreign actors. This law would not just target criminals, it would destroy security for everyone.”

Researchers stress that the French proposals aren’t technically sound without “fundamentally weakening the security of messaging and email services.” Similar to the “Online Safety Act” in the UK, the proposed French law exposes a serious misunderstanding of the practical achievements with end-to-end encrypted systems. Experts believe “there are no safe backdoors into encrypted services.”

Use of spyware may be allowed

The law will allow using infamous spywares such as NSO Group’s Pegasus or Pragon that will enable officials to remotely surveil devices. “Tuta Mail has warned that if the proposals are passed, it would put France in conflict with European Union laws, and German IT security laws, including the IT Security Act and Germany’s Telecommunications Act (TKG) which require companies to secure their customer’s data,” reports Computer Weekly.

Protect Your Security Cameras from Hackers with These Simple Steps

 



Security cameras are meant to keep us safe, but they can also become targets for hackers. If cybercriminals gain access, they can spy on you or tamper with your footage. To prevent this, follow these straightforward tips to ensure your security cameras remain under your control.

1. Avoid Cheap or Second-Hand Cameras

While it might be tempting to buy an inexpensive or used security camera, doing so can put your privacy at risk. Unknown brands or knockoffs may have weak security features, making them easier to hack. Used cameras, even if reset, could still contain old software vulnerabilities or even hidden malware. Always choose reputable brands with good security records.

2. Choose Cameras with Strong Encryption

Encryption ensures that your video data is protected from unauthorized access. Look for brands that offer end-to-end encryption, which keeps your footage secure even if intercepted. Some brands, like Ring and Arlo, provide full encryption options, while others offer partial protection. The more encryption a company provides, the better your data is protected.

3. Research Security Reputation Before Buying

Before purchasing a camera, check if the company has a history of data breaches or security flaws. Some brands have had incidents where hackers accessed user data, so it’s essential to choose a manufacturer with a strong commitment to cybersecurity. Look for companies that use offline storage or advanced security features to minimize risks.

4. Strengthen Your Wi-Fi and App Passwords

A weak Wi-Fi password can allow hackers to access all connected devices in your home, including security cameras. Always use a strong, unique password for both your Wi-Fi network and camera app. Enable encryption on your router, activate built-in firewalls, and consider using a virtual private network (VPN) for extra protection. If you experience life changes like moving or breaking up with a partner, update your passwords to prevent unauthorized access.

5. Keep Your Camera Software Updated

Security camera companies regularly release updates to fix vulnerabilities and improve protection. If your camera has an option for automatic updates, turn it on. If not, make sure to check for updates manually through your camera app to ensure your system has the latest security patches.

6. Enable Two-Factor Authentication (2FA)

Two-factor authentication adds an extra layer of security by requiring a second verification step, such as a text message or email code, before logging in. This prevents unauthorized users from accessing your camera, even if they have your password.


Modern security cameras are much safer than before, thanks to improved encryption and security features. Most hacking attempts happen when users fail to secure their accounts or choose unreliable brands. However, there is still a risk if the camera company itself experiences a data breach. To minimize exposure, consider cameras with local storage or privacy covers for indoor models.

Who Tries to Hack Security Cameras?

In most cases, security cameras are not hacked by strangers. Instead, unauthorized access usually comes from people you know, such as an ex-partner or family member who already has login details. Occasionally, unethical employees at security companies have been caught misusing access. Ensuring strong passwords, encryption, and additional security measures can help prevent these issues.

By following these simple steps, you can keep your security cameras safe from hackers and ensure your home remains private and secure.


RSA Encryption Breached by Quantum Computing Advancement

 


A large proportion of the modern digital world involves everyday transactions taking place on the internet, from simple purchases to the exchange of highly sensitive corporate data that is highly confidential. In this era of rapid technological advancement, quantum computing is both perceived as a transformative opportunity and a potential security threat. 

Quantum computing has been generating considerable attention in recent years, but as far as the 2048-bit RSA standard is concerned, it defies any threat these advances pose to the existing encryption standards that have been in use for decades. Several cybersecurity experts have expressed concern about quantum technologies potentially compromising military-grade encryption because of the widespread rumours.

However, these developments have not yet threatened robust encryption protocols like AES and TLS, nor do they threaten high-security encryption protocols like SLA or PKI. In addition to being a profound advancement over classical computing, quantum computing utilizes quantum mechanics principles to produce computations that are far superior to classical computation. 

Despite the inherent complexity of this technology, it has the potential to revolutionize fields such as pharmaceutical research, manufacturing, financial modelling, and cybersecurity by bringing enormous benefits. The quantum computer is a device that combines the unique properties of subatomic particles with the ability to perform high-speed calculations and is expected to revolutionize the way problems are solved across a wide range of industries by exploiting their unique properties. 

Although quantum-resistant encryption has been the focus of much attention lately, ongoing research is still essential if we are to ensure the long-term security of our data. As a major milestone in this field occurred in 2024, researchers reported that they were able to successfully compromise RSA encryption, a widely used cryptography system, with a quantum computer. 

To ensure the security of sensitive information transferred over digital networks, data encryption is an essential safeguard. It converts the plaintext into an unintelligible format that can only be decrypted with the help of a cryptographic key that is designated by the sender of the encrypted data. It is a mathematical value which is known to both the sender and the recipient but it is only known to them. This set of mathematical values ensures that only authorized parties can access the original information. 

To be able to function, cryptographic key pairs must be generated, containing both a public key and a private key. Plaintext is encrypted using the public key, which in turn encrypts it into ciphertext and is only decryptable with the corresponding private key. The primary principle of RSA encryption is that it is computationally challenging to factor large composite numbers, which are formed by multiplying two large prime numbers by two. 

Therefore, RSA encryption is considered highly secure. As an example, let us consider the composite number that is released when two 300-digit prime numbers are multiplied together, resulting in a number with a 600-digit component, and whose factorization would require a very long period if it were to be done by classical computing, which could extend longer than the estimated lifespan of the universe.

Despite the inherent complexity of the RSA encryption standard, this standard has proven to be extremely resilient when it comes to securing digital communications. Nevertheless, the advent of quantum computing presents a formidable challenge to this system. A quantum computer has the capability of factoring large numbers exponentially faster than classical computers through Shor's algorithm, which utilizes quantum superposition to perform multiple calculations at once, which facilitates the simultaneous execution of many calculations at the same time. 

Among the key components of this process is the implementation of the Quantum Fourier Transform (QFT), which extracts critical periodic values that are pertinent to refining the factorization process through the extraction of periodic values. Theoretically, a quantum computer capable of processing large integers could be able to break down the RSA encryption into smaller chunks of data within a matter of hours or perhaps minutes, effectively rendering the security of the encryption susceptible. 

As quantum computing advances, the security implications for cryptographic systems such as RSA are under increasing threat, necessitating that quantum-resistant encryption methodologies must be developed. There is a significant threat posed by quantum computers being able to decrypt such encryption mechanisms, and this could pose a substantial challenge to current cybersecurity frameworks, underscoring the importance of continuing to improve quantum-resistant cryptographic methods. 

The classical computing system uses binary bits for the representation of data, which are either zero or one digits. Quantum computers on the other hand use quantum bits, also called qubits, which are capable of occupying multiple states at the same time as a result of the superposition principle. As a result of this fundamental distinction, quantum computers can perform highly complex computations much faster than classical machines, which are capable of performing highly complex computations. 

As an example of the magnitude of this progress, Google reported a complex calculation that it successfully performed within a matter of seconds on its quantum processor, whereas conventional computing technology would have taken approximately 10,000 years to accomplish. Among the various domains in which quantum computing can be applied, a significant advantage can be seen when it comes to rapidly processing vast datasets, such as the artificial intelligence and machine learning space. 

As a result of this computational power, there are also cybersecurity concerns, as it may undermine existing encryption protocols by enabling the decryption of secure data at an unprecedented rate, which would undermine existing encryption protocols. As a result of quantum computing, it is now possible for long-established cryptographic systems to be compromised by quantum computers, raising serious concerns about the future security of the internet. However, there are several important caveats to the recent study conducted by Chinese researchers which should be taken into account. 

In the experiment, RSA encryption keys were used based on a 50-bit integer, which is considerably smaller and less complex than the encryption standards used today in security protocols that are far more sophisticated. RSA encryption is a method of encrypting data that relies on the mathematical difficulty of factoring large prime numbers or integers—complete numbers that cannot be divided into smaller fractions by factors. 

To increase the security of the encryption, the process is exponentially more complicated with larger integers, resulting in a greater degree of complexity. Although the study by Shanghai University proved that 50-bit integers can be decrypted successfully, as Ron Rivest, Adi Shamir, and Leonard Adleman have stressed to me, this achievement has no bearing on breaking the 2048-bit encryption commonly used in current RSA implementations. This achievement, however, is far from achieving any breakthrough in RSA. As a proof of concept, the experiment serves rather as a potential threat to global cybersecurity rather than as an immediate threat. 

It was demonstrated in the study that quantum computers are capable of decrypting relatively simple RSA encryption keys, however, they are unable to crack the more robust encryption protocols that are currently used to protect sensitive digital communications. The RSA algorithm, as highlighted by RSA Security, is the basis for all encryption frameworks across the World Wide Web, which means that almost all internet users have a vested interest in whether or not these cryptographic protections remain reliable for as long as possible. Even though this experiment does not signal an imminent crisis, it certainly emphasizes the importance of continuing to be vigilant as quantum computing technology advances in the future.

Report: Telegram Crypto Scammers Adopt More Sophisticated Tactics

 

Telegram, a popular communications app known for encrypted messaging and calls, has become a prime target for sophisticated malware scams, according to the Web3-focused Scam Sniffer account on X. Sharing data on the platform, Scam Sniffer revealed that scammers on Telegram are now deploying malware instead of traditional phishing tactics.

The app, often considered an alternative to WhatsApp and Signal, offers privacy through encryption, making it attractive for both legitimate users and scammers. Previously, cryptocurrency scams on Telegram relied heavily on phishing techniques involving spoofed web pages and social engineering to extract sensitive information or access to crypto wallets.

However, the latest scam wave employs deceptive tools like fake verification bots, scam trading groups, and so-called “exclusive alpha groups,” as noted by Scam Sniffer. Victims are tricked into installing malware disguised as verification tools. Once installed, the malware can access passwords, wallets, clipboard data, and even browser information, leaving victims highly vulnerable.

Scammers have shifted to malware schemes partly because users are now more aware of traditional phishing tactics. Scam Sniffer pointed out that these new approaches make it harder to trace the source of the scams. The rise in cryptocurrency scams has been dramatic, with data showing over 2000% growth in dedicated scam groups. Bitcoin's soaring value, surpassing $100,000, has made cryptocurrency users more frequent targets.

Telegram has actively banned accounts involved in these scams, but managing the volume of malicious actors remains challenging. The website “Web3 is Going Great,” which tracks Web3-related scams, reports $7.84 million in losses from scams and hacks so far this year.

Bitcoin Security Concerns Amid Quantum Computing Advancements

 

Chamath Palihapitiya, CEO of Social Capital, has raised alarms over Bitcoin’s future security, cautioning that its SHA-256 encryption may become vulnerable within the next two to five years. Speaking on the All-In Podcast, he highlighted rapid advancements in quantum computing, particularly Google’s unveiling of the Willow quantum chip featuring 105 qubits. Palihapitiya estimates that 8,000 such chips could potentially breach SHA-256 encryption, underscoring the pressing need for blockchain networks to adapt.

Quantum Computing's Impact on Cryptography

While acknowledging the infancy of quantum computing, Palihapitiya pointed to Google’s Willow chip as a pivotal development that could accelerate breakthroughs in cryptography. Despite scalability challenges, he remains optimistic that the cryptocurrency sector will evolve to develop quantum-resistant encryption methods.

Not all experts share his concerns, however. Ki Young Ju, founder of CryptoQuant, has expressed confidence that Bitcoin’s encryption is unlikely to face quantum threats within this decade.

Satoshi Nakamoto’s Early Solutions

Bitcoin’s pseudonymous creator, Satoshi Nakamoto, had anticipated such scenarios. In 2010, Satoshi proposed that the Bitcoin community could agree on the last valid blockchain snapshot and transition to a new cryptographic framework if SHA-256 were compromised. However, these early solutions are not without controversy.

Emin Gün Sirer, founder of Avalanche, has warned that some of Satoshi’s early-mined coins used an outdated Pay-To-Public-Key (P2PK) format, which exposes public keys and increases the risk of exploitation. Sirer suggested the Bitcoin community should consider freezing these coins or setting a sunset date for outdated transactions to mitigate risks.

Recent advancements in quantum computing, including Google’s Willow chip, briefly unsettled the cryptocurrency market. A sudden wave of liquidations resulted in $1.6 billion being wiped out within 24 hours. However, Bitcoin demonstrated resilience, reclaiming the $100,000 resistance level and achieving a 4.6% weekly gain.

Proactive Measures for Long-Term Security

Experts widely agree that proactive steps, such as transitioning to quantum-resistant cryptographic frameworks, will be essential for ensuring Bitcoin’s long-term security. As the quantum era approaches, collaboration and innovation within the cryptocurrency community will be pivotal in maintaining its robustness against emerging threats.

The ongoing advancements in quantum computing present both challenges and opportunities. While they highlight vulnerabilities in existing systems, they also drive the cryptocurrency sector toward innovative solutions that will likely define the next chapter in its evolution.