Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Encryption. Show all posts

Ethical Hacking: The Cyber Shield Organizations Need

 

Ethical hacking may sound paradoxical, but it’s one of the most vital tools in modern cyber defence. Known as white hat hackers, these professionals are hired by companies to simulate cyberattacks, uncover vulnerabilities, and help fix them before malicious actors can strike.

“Ethical hackers mimic real-world threats to identify and patch security flaws. It’s about staying a step ahead of the bad guys,” says a cybersecurity expert.

As cyber threats surge globally, ethical hackers are in high demand. A recent Check Point Software report revealed a staggering 44% rise in global cyberattacks. From ransomware gangs to state-sponsored intrusions, the risks are growing—and the need for skilled defenders is greater than ever.

The ethical hacking process begins with reconnaissance—mapping a company’s digital infrastructure. Next comes scanning and vulnerability testing, using the same techniques as criminal hackers. Once issues are identified, they’re reported, not exploited. Some ethical hackers work independently, participating in bug bounty programs for companies like Google and Microsoft.

Industries like finance, healthcare, and tech—where sensitive data is a prime target—rely heavily on ethical hackers. Their techniques include penetration testing, system and network hacking, internal assessments, and web application testing.

In 2019, a team at Positive Technologies uncovered a Visa card flaw that could’ve allowed contactless payments to exceed set limits—just one example of ethical hacking saving the day.

Penetration testing simulates real breaches, such as injecting code, overloading systems, or intercepting data. System hacking targets devices with tools to crack passwords or exploit system weaknesses. Internal testing flags human errors, like weak credentials or poor security training. Web app testing scans for issues like XSS or SQL injections before launch. Network hacking exposes flaws in protocols, open ports, or wireless vulnerabilities.

The biggest advantage? Ethical hackers reveal blind spots that internal teams might miss. They prevent data breaches, build customer trust, and ensure compliance with regulatory standards—saving organizations from reputational and financial harm.

“Finding flaws isn’t enough. Ethical hackers offer the roadmap to fix them—fast,” a security analyst shares.

With the right skills, anyone can break into this field—often with significant rewards. Major companies offer million-dollar payouts through bug bounty programs. Many ethical hackers hold certifications like CEH, OSCP, or CySA+, with backgrounds ranging from military service to degrees in computer science.

The term “hacker” doesn’t always mean trouble. Ethical hackers use the same tools as their criminal counterparts—but to protect, not exploit. In today’s digital battlefield, they’re the unsung heroes safeguarding the future.


Google Rolls Out Simplified End-to-End Encryption for Gmail Enterprise Users

 

Google has begun the phased rollout of a new end-to-end encryption (E2EE) system for Gmail enterprise users, simplifying the process of sending encrypted emails across different platforms.

While businesses could previously adopt the S/MIME (Secure/Multipurpose Internet Mail Extensions) protocol for encrypted communication, it involved a resource-intensive setup — including issuing and managing certificates for all users and exchanging them before messages could be sent.

With the introduction of Gmail’s enhanced E2EE model, Google says users can now send encrypted emails to anyone, regardless of their email service, without needing to handle complex certificate configurations.

"This capability, requiring minimal efforts for both IT teams and end users, abstracts away the traditional IT complexity and substandard user experiences of existing solutions, while preserving enhanced data sovereignty, privacy, and security controls," Google said today.

The rollout starts in beta with support for encrypted messages sent within the same organization. In the coming weeks, users will be able to send encrypted emails to any Gmail inbox — and eventually to any email address, Google added.

"We're rolling this out in a phased approach, starting today, in beta, with the ability to send E2EE emails to Gmail users in your own organization. In the coming weeks, users will be able to send E2EE emails to any Gmail inbox, and, later this year, to any email inbox."

To compose an encrypted message, users can simply toggle the “Additional encryption” option while drafting their email. If the recipient is a Gmail user with either an enterprise or personal account, the message will decrypt automatically.

For users on the Gmail mobile app or non-Gmail email services, a secure link will redirect them to view the encrypted message in a restricted version of Gmail. These recipients can log in using a guest Google Workspace account to read and respond securely.

If the recipient already has S/MIME enabled, Gmail will continue to use that protocol automatically for encryption — just as it does today.

The new encryption capability is powered by Gmail's client-side encryption (CSE), a Workspace control that allows organizations to manage their own encryption keys outside of Google’s infrastructure. This ensures sensitive messages and attachments are encrypted locally on the client device before being sent to the cloud.

The approach supports compliance with various regulatory frameworks, including data sovereignty, HIPAA, and export control policies, by ensuring that encrypted content is inaccessible to both Google and any external entities.

Gmail’s CSE feature has been available to Google Workspace Enterprise Plus, Education Plus, and Education Standard customers since February 2023. It was initially introduced in beta for Gmail on the web in December 2022, following earlier launches across Google Drive, Docs, Sheets, Slides, Meet, and Calendar.

Fake Zoom Download Sites Spreading BlackSuit Ransomware, Experts Warn

 

A new cyberattack campaign is targeting Zoom users by disguising ransomware as the popular video conferencing tool, according to Cybernews. Researchers from DFIR have uncovered a scheme by the BlackSuit ransomware gang, which uses deceptive websites to distribute malicious software.

Instead of downloading Zoom from the official site, unsuspecting users are being lured to fraudulent platforms that closely mimic the real thing. One such site, zoommanager[.]com, tricks users into installing malware. Once downloaded, the BlackSuit ransomware remains dormant for several days before launching its full attack.

The malware first scrapes and encrypts sensitive personal and financial data. Then, victims are presented with a ransom demand to regain access to their files.

BlackSuit has a history of targeting critical infrastructure, including schools, hospitals, law enforcement, and public service systems. The ransomware begins by downloading a malicious loader, which can bypass security tools and even disable Windows Defender.

Researchers found that the malware connects to a Steam Community page to fetch the next-stage server, downloading both the legitimate Zoom installer and malicious payload. It then injects itself into a MSBuild executable, staying inactive for eight days before initiating further actions.

On day nine, it executes Windows Commands to collect system data and deploys Cobalt Strike, a common hacker tool for lateral movement across networks. The malware also installs QDoor, allowing remote access through a domain controller. The final phase involves compressing and downloading key data before spreading the ransomware across all connected Windows systems. Victims’ files are locked with a password, and a ransom note is left behind.

Cybersecurity experts stress the importance of downloading software only from official sources. The genuine Zoom download page is located at zoom[.]us/download, which is significantly different from the deceptive site mentioned earlier.

"Zoom isn't nearly as popular with hackers now as it was a few years ago but given how widely used the service is, it's an easy way to target unsuspecting users online."

To protect against these kinds of attacks, users should remain vigilant about phishing tactics, use reputable antivirus software, and ensure it stays updated. Many modern antivirus tools now offer VPNs, password managers, and multi-device protection, adding extra layers of security.

"As well as making sure you're always downloading software from the correct source, make sure you are aware of common phishing techniques and tricks so you can recognize them when you see them."

It’s also recommended to manually navigate to software websites instead of clicking links in emails or search results, reducing the risk of accidentally landing on malicious clones.

Encryption Under Siege: A New Wave of Attacks Intensifies

 

Over the past decade, encrypted communication has become a standard for billions worldwide. Platforms like Signal, iMessage, and WhatsApp use default end-to-end encryption, ensuring user privacy. Despite widespread adoption, governments continue pushing for greater access, threatening encryption’s integrity.

Recently, authorities in the UK, France, and Sweden have introduced policies that could weaken encryption, adding to EU and Indian regulatory measures that challenge privacy. Meanwhile, US intelligence agencies, previously critical of encryption, now advocate for its use after major cybersecurity breaches. The shift follows an incident where the China-backed hacking group Salt Typhoon infiltrated US telecom networks. Simultaneously, the second Trump administration is expanding surveillance of undocumented migrants and reassessing intelligence-sharing agreements.

“The trend is bleak,” says Carmela Troncoso, privacy and cryptography researcher at the Max-Planck Institute for Security and Privacy. “New policies are emerging that undermine encryption.”

Law enforcement argues encryption obstructs criminal investigations, leading governments to demand backdoor access to encrypted platforms. Experts warn such access could be exploited by malicious actors, jeopardizing security. Apple, for example, recently withdrew its encrypted iCloud backup system from the UK after receiving a secret government order. The company’s compliance would require creating a backdoor, a move expected to be challenged in court on March 14. Similarly, Sweden is considering laws requiring messaging services like Signal and WhatsApp to retain message copies for law enforcement access, prompting Signal to threaten market exit.

“Some democracies are reverting to crude approaches to circumvent encryption,” says Callum Voge, director of governmental affairs at the Internet Society.

A growing concern is client-side scanning, a technology that scans messages on users’ devices before encryption. While presented as a compromise, experts argue it introduces vulnerabilities. The EU has debated its implementation for years, with some member states advocating stronger encryption while others push for increased surveillance. Apple abandoned a similar initiative after warning that scanning for one type of content could pave the way for mass surveillance.

“Europe is divided, with some countries strongly in favor of scanning and others strongly against it,” says Voge.

Another pressing threat is the potential banning of encrypted services. Russia blocked Signal in 2024, while India’s legal battle with WhatsApp could force the platform to abandon encryption or exit the market. The country has already prohibited multiple VPN services, further limiting digital privacy options.

Despite mounting threats, pro-encryption responses have emerged. The US Cybersecurity and Infrastructure Security Agency and the FBI have urged encrypted communication use following recent cybersecurity breaches. Sweden’s armed forces also endorse Signal for unclassified communications, recognizing its security benefits.

With the UK’s March 14 legal proceedings over Apple’s backdoor request approaching, US senators and privacy organizations are demanding greater transparency. UK civil rights groups are challenging the confidential nature of such surveillance orders.

“The UK government may have come for Apple today, but tomorrow it could be Google, Microsoft, or even your VPN provider,” warns Privacy International.

Encryption remains fundamental to human rights, safeguarding free speech, secure communication, and data privacy. “Encryption is crucial because it enables a full spectrum of human rights,” says Namrata Maheshwari of Access Now. “It supports privacy, freedom of expression, organization, and association.”

As governments push for greater surveillance, the fight for encryption and privacy continues, shaping the future of digital security worldwide.


Thousands of iOS Apps Expose Sensitive Data Through Hardcoded Secrets, Researchers Warn

 

Cybersecurity researchers have uncovered alarming vulnerabilities in thousands of iOS applications, revealing that hardcoded secrets in their code have put users' sensitive information at risk.

A recent analysis by Cybernews examined over 156,000 iOS apps and detected more than 815,000 hardcoded secrets—some of which are highly sensitive and could potentially lead to security breaches or data leaks.

The term "secret" broadly refers to sensitive credentials like API keys, passwords, and encryption keys. These are often embedded directly into an app’s source code for convenience during development, but developers sometimes fail to remove them before release. According to Cybernews, the average iOS app exposes 5.2 secrets, and 71% of apps contain at least one leaked credential.

While some of these hardcoded secrets pose minimal risk, the report highlights serious threats. Researchers identified over 83,000 cloud storage endpoints, with 836 exposed without authentication, potentially leaking more than 400TB of data. Additionally, 51,000 Firebase endpoints were discovered, thousands of which were accessible to outsiders. Other exposed credentials include API keys for platforms like Fabric API, Live Branch, and MobApp Creator.

Among the most critical findings were 19 hardcoded Stripe secret keys, which directly control financial transactions. Cybernews researchers emphasized the severity of this issue, stating: “Stripe is widely used by e-commerce and even fintech companies to handle online payments.”

This vulnerability could allow cybercriminals to manipulate transactions or gain unauthorized access to payment infrastructure.

The findings challenge the common belief that iOS apps offer stronger security compared to other platforms.

“Many people believe that iOS apps are more secure and less likely to contain malware. However, our research shows that many apps in the ecosystem contain easily accessible hardcoded credentials. We followed the trail and found open databases with personal data and accessible infrastructure,” said Aras Nazarovas, a security researcher at Cybernews.

This study underscores the importance of secure coding practices and urges developers to adopt better security protocols to prevent data breaches and unauthorized access.


Hawcx Aims to Solve Passkey Challenges with Passwordless Authentication

 


Passwords remain a staple of online security, despite their vulnerabilities. According to Verizon, nearly one-third of all reported data breaches in the past decade resulted from stolen credentials, including some of the largest cyberattacks in history.  

In response, the tech industry has championed passkeys as a superior alternative to passwords. Over 15 billion accounts now support passkey technology, with major companies such as Amazon, Apple, Google, and Microsoft driving adoption.

However, widespread adoption remains sluggish due to concerns about portability and usability. Many users find passkeys cumbersome, particularly when managing access across multiple devices.

Cybersecurity startup Hawcx is addressing these passkey limitations with its innovative authentication technology. By eliminating key storage and transmission issues, Hawcx enhances security while improving usability.

Users often struggle with passkey setup and access across devices, leading to account lockouts and costly recovery—a significant challenge for businesses. As Dan Goodin of Ars Technica highlights, while passkeys offer enhanced security, their complexity can introduce operational inefficiencies at scale.

Hawcx, founded in 2023 by Riya Shanmugam (formerly of Adobe, Google, and New Relic), along with Selva Kumaraswamy and Ravi Ramaraju, offers a platform-agnostic solution. Developers can integrate its passwordless authentication by adding just five lines of code.

Unlike traditional passkeys, Hawcx does not store or transmit private keys. Instead, it cryptographically generates private keys each time a user logs in. This method ensures compatibility with older devices that lack modern hardware for passkey support.

“We are not reinventing the wheel fundamentally in most of the processes we have built,” Shanmugam told TechCrunch.

If a user switches devices, Hawcx’s system verifies authenticity before granting access, without storing additional private keys on the new device or in the cloud. This approach differs from standard passkeys, which require syncing private keys across devices or through cloud services.

“No one is challenging beyond the foundation,” Shanmugam said. “What we are challenging is the foundation itself. We are not building on top of what passkeys as a protocol provides. We are saying this protocol comes with an insane amount of limitations for users, enterprises, and developers, and we can make it better.”

Although Hawcx has filed patents, its technology has yet to be widely deployed or independently validated—factors that could influence industry trust. However, the company recently secured $3 million in pre-seed funding from Engineering Capital and Boldcap to accelerate development and market entry.

Shanmugam revealed that Hawcx is in talks with major banks and gaming companies for pilot programs set to launch in the coming weeks. These trials, expected to run for three to six months, will help refine the technology before broader implementation. Additionally, the startup is working with cryptography experts from Stanford University to validate its approach.

“As we are rolling out passkeys, the adoption is low. It’s clear to me that as good as passkeys are and they have solved the security problem, the usability problem still remains,” Tushar Phondge, director of consumer identity at ADP, told TechCrunch.

ADP plans to pilot Hawcx’s solution to assess its effectiveness in addressing passkey-related challenges, such as device dependency and system lockups.

Looking ahead, Hawcx aims to expand its authentication platform by integrating additional security services, including document verification, live video authentication, and background checks.

Frances Proposes Law Requiring Tech Companies to Provide Encrypted Data


Law demanding companies to provide encrypted data

New proposals in the French Parliament will mandate tech companies to give decrypted messages, email. If businesses don’t comply, heavy fines will be imposed.

France has proposed a law requiring end-to-end encryption messaging apps like WhatsApp and Signal, and encrypted email services like Proton Mail to give law enforcement agencies access to decrypted data on demand. 

The move comes after France’s proposed “Narcotraffic” bill, asking tech companies to hand over encrypted chats of suspected criminals within 72 hours. 

The law has stirred debates in the tech community and civil society groups because it may lead to building of “backdoors” in encrypted devices that can be abused by threat actors and state-sponsored criminals.

Individuals failing to comply will face fines of €1.5m and companies may lose up to 2% of their annual world turnover in case they are not able to hand over encrypted communications to the government.

Criminals will exploit backdoors

Few experts believe it is not possible to bring backdoors into encrypted communications without weakening their security. 

According to Computer Weekly’s report, Matthias Pfau, CEO of Tuta Mail, a German encrypted mail provider, said, “A backdoor for the good guys only is a dangerous illusion. Weakening encryption for law enforcement inevitably creates vulnerabilities that can – and will – be exploited by cyber criminals and hostile foreign actors. This law would not just target criminals, it would destroy security for everyone.”

Researchers stress that the French proposals aren’t technically sound without “fundamentally weakening the security of messaging and email services.” Similar to the “Online Safety Act” in the UK, the proposed French law exposes a serious misunderstanding of the practical achievements with end-to-end encrypted systems. Experts believe “there are no safe backdoors into encrypted services.”

Use of spyware may be allowed

The law will allow using infamous spywares such as NSO Group’s Pegasus or Pragon that will enable officials to remotely surveil devices. “Tuta Mail has warned that if the proposals are passed, it would put France in conflict with European Union laws, and German IT security laws, including the IT Security Act and Germany’s Telecommunications Act (TKG) which require companies to secure their customer’s data,” reports Computer Weekly.

Protect Your Security Cameras from Hackers with These Simple Steps

 



Security cameras are meant to keep us safe, but they can also become targets for hackers. If cybercriminals gain access, they can spy on you or tamper with your footage. To prevent this, follow these straightforward tips to ensure your security cameras remain under your control.

1. Avoid Cheap or Second-Hand Cameras

While it might be tempting to buy an inexpensive or used security camera, doing so can put your privacy at risk. Unknown brands or knockoffs may have weak security features, making them easier to hack. Used cameras, even if reset, could still contain old software vulnerabilities or even hidden malware. Always choose reputable brands with good security records.

2. Choose Cameras with Strong Encryption

Encryption ensures that your video data is protected from unauthorized access. Look for brands that offer end-to-end encryption, which keeps your footage secure even if intercepted. Some brands, like Ring and Arlo, provide full encryption options, while others offer partial protection. The more encryption a company provides, the better your data is protected.

3. Research Security Reputation Before Buying

Before purchasing a camera, check if the company has a history of data breaches or security flaws. Some brands have had incidents where hackers accessed user data, so it’s essential to choose a manufacturer with a strong commitment to cybersecurity. Look for companies that use offline storage or advanced security features to minimize risks.

4. Strengthen Your Wi-Fi and App Passwords

A weak Wi-Fi password can allow hackers to access all connected devices in your home, including security cameras. Always use a strong, unique password for both your Wi-Fi network and camera app. Enable encryption on your router, activate built-in firewalls, and consider using a virtual private network (VPN) for extra protection. If you experience life changes like moving or breaking up with a partner, update your passwords to prevent unauthorized access.

5. Keep Your Camera Software Updated

Security camera companies regularly release updates to fix vulnerabilities and improve protection. If your camera has an option for automatic updates, turn it on. If not, make sure to check for updates manually through your camera app to ensure your system has the latest security patches.

6. Enable Two-Factor Authentication (2FA)

Two-factor authentication adds an extra layer of security by requiring a second verification step, such as a text message or email code, before logging in. This prevents unauthorized users from accessing your camera, even if they have your password.


Modern security cameras are much safer than before, thanks to improved encryption and security features. Most hacking attempts happen when users fail to secure their accounts or choose unreliable brands. However, there is still a risk if the camera company itself experiences a data breach. To minimize exposure, consider cameras with local storage or privacy covers for indoor models.

Who Tries to Hack Security Cameras?

In most cases, security cameras are not hacked by strangers. Instead, unauthorized access usually comes from people you know, such as an ex-partner or family member who already has login details. Occasionally, unethical employees at security companies have been caught misusing access. Ensuring strong passwords, encryption, and additional security measures can help prevent these issues.

By following these simple steps, you can keep your security cameras safe from hackers and ensure your home remains private and secure.