Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Hackers. Show all posts

Hackers Exploit Flaw in Microsoft-Signed Driver to Launch Ransomware Attacks

 



Cybercriminals are exploiting a vulnerability in a Microsoft-signed driver developed by Paragon Software, known as BioNTdrv.sys, to carry out ransomware attacks. This driver, part of Paragon Partition Manager, is typically used to manage hard drive space, but hackers have found a way to misuse it for malicious purposes.  


How the Attack Works  

The vulnerability, identified as CVE-2025-0289, allows attackers to use a technique called "bring your own vulnerable driver" (BYOVD). This means they introduce the legitimate but flawed driver into a system and exploit it to gain high-level access. Once they obtain SYSTEM-level privileges, they can execute ransomware, steal data, or disable security software without being detected.  

The alarming part is that the vulnerability can be exploited even on devices that do not have Paragon Partition Manager installed, as long as the driver exists on the system.  


Other Vulnerabilities  

Researchers also found four additional flaws in the driver:  

1. CVE-2025-0288: Allows access to kernel memory, helping attackers gain control.  

2. CVE-2025-0287: Can crash the system using a null pointer error.  

3. CVE-2025-0286: Enables attackers to execute malicious code in kernel memory.  

4. CVE-2025-0285: Allows manipulation of kernel memory, escalating control. 


Response from Microsoft and Paragon  

Microsoft confirmed that hackers are already using this flaw to spread ransomware and has responded by blocking the vulnerable driver through its Vulnerable Driver Blocklist. Meanwhile, Paragon Software has released a security patch and advised users to update their drivers immediately to avoid potential risks.  


How to Stay Safe  

To protect your system from these attacks:  

1. Update your drivers from Paragon Software to the latest version.  

2. Install Windows security updates regularly.  

3. Use reliable antivirus software to detect suspicious activities.  

4. Monitor your system for unexpected crashes or slow performance.    

While Microsoft and Paragon Software have taken steps to contain the damage, users must stay proactive in securing their systems through regular updates and vigilant monitoring.

Hackers Can Attack Your Rooftop Solar Panels, With Ease

Hackers Can Attack Your Rooftop Solar Panels, With Ease

Do not set weak passwords for your solar panels

Hackers are attracted to weak passwords like moths to flame. Imagine this: your password is weak enough to be hacked via brute-force attack, or already known because you haven’t reset the factory admin default. 

In that case, it is a win-win for hackers who want to steal your data, as there is no need for advanced infostealer malware campaigns. However, when the case is “energy,” and the entry route is via solar panels installed on your rooftops, the price to pay increases. 

Global shift and security gaps in solar power

The Global move for smart-energy production has added new security gaps to national power grids. German International Broadcaster “Deutsche Welle” (DW) talked with hackers who have revealed flaws in solar power plants and rooftop installations around the world.

DW has alerted that “hackers can easily access solar power plants due to weak passwords and vulnerable software, posing a significant threat to energy security.” Rooftop installations are the main concern because the “ transition to renewable energy relies on digital networks that can be targeted by hackers,” Mathis Richtmann, reporter at Deutsche Welle said.

Security gaps explained

In October 2024, Secura studied the cybersecurity danger to the solar power industry in the Netherlands. The report found 27 different cases where large-scale attacks of solar power panels could be executed. 

Secura researchers described the attack as “disastrous,” involving “severe economic damage, physical damage and even damage to society itself, certainly if the secondary consequences of the cyberattacks are taken into consideration.” The report investigated every aspect, “small domestic rooftop installations” via SME and large-scale “solar farms.” Supply chain attacks, hardware hacking, and web portal attacks were also researched.

The Problem of Password with Solar Panel

DW talked to a U.S hacker Aditya Sood, who showed how easy it was to hack into a remote dashboard for a solar power plant in India’s Tamil Nadu region. “There it goes,” Aditya said, explaining how “People deploy their devices and forget to actually change default passwords”, or “they have configured very weak passwords.”

A German company that looked into the design of the solar control setup in the Tamil Nadu plant told Richtmann that “while it is technically possible for a customer to assign a weak password and provide open access to their network on the internet, we do not recommend this.” Sood agrees with the intent, but hackers with malicious aims will exploit this opportunity, he demonstrated. 

How to be safe?

Takeaways? The answer is simple: change your password, immediately. And make it a strong one. Don’t depend on factory defaults, and never share your login details. A user might think “How is it a big deal? My rooftop solar panel is just a small part in a big machine,” but when attacked, the consequences will be severe.

Hackers Use Invisible Unicode Trick to Hide Phishing Attacks

 


Cybercriminals have discovered a new way to conceal malicious code inside phishing attacks by using invisible Unicode characters. This technique, identified by Juniper Threat Labs, has been actively used in attacks targeting affiliates of a U.S. political action committee (PAC). By making their scripts appear as blank space, hackers can evade detection from traditional security tools and increase the likelihood of successfully compromising victims. 

The attack, first observed in early January 2025, is more advanced than typical phishing campaigns. Hackers customized their messages using personal, non-public details about their targets, making the emails seem more legitimate. They also implemented various tricks to avoid detection, such as inserting debugger breakpoints and using timing checks to prevent cybersecurity professionals from analyzing the script. 

Additionally, they wrapped phishing links inside multiple layers of Postmark tracking links, making it harder to trace the final destination of the attack. The method itself isn’t entirely new. In October 2024, JavaScript developer Martin Kleppe introduced the idea as an experimental programming technique. However, cybercriminals quickly adapted it for phishing attacks. 

The trick works by converting each character in a JavaScript script into an 8-bit binary format. Instead of using visible numbers like ones and zeros, attackers replace them with invisible Hangul Unicode characters, such as U+FFA0 and U+3164. Since these characters don’t appear on-screen, the malicious code looks completely empty, making it difficult to detect with the naked eye or automated security scans. 

The hidden script is stored as a property inside a JavaScript object, appearing as blank space. A separate bootstrap script then retrieves the hidden payload using a JavaScript Proxy get() trap. When accessed, this proxy deciphers the invisible Unicode characters back into binary, reconstructing the original JavaScript code and allowing the attack to execute. To make detection even more difficult, hackers have layered additional evasion techniques. They use base64 encoding to further disguise the script and implement anti-debugging measures. If the script detects that it’s being analyzed—such as when someone tries to inspect it with a debugger—it will shut down immediately and redirect the user to a harmless website. 

This prevents cybersecurity researchers from easily studying the malware. This technique is particularly dangerous because it allows attackers to blend their malicious code into legitimate scripts without raising suspicion. The invisible payload can be injected into otherwise safe websites, and since it appears as empty space, many security tools may fail to detect it. 

Juniper Threat Labs linked two of the domains used in this campaign to the Tycoon 2FA phishing kit, a tool previously associated with large-scale phishing operations. This connection suggests that the technique could soon be adopted by other cybercriminals. As attackers continue to develop new evasion strategies, cybersecurity teams will need to create better detection methods to counter these hidden threats before they cause widespread damage.

Protect Your Security Cameras from Hackers with These Simple Steps

 



Security cameras are meant to keep us safe, but they can also become targets for hackers. If cybercriminals gain access, they can spy on you or tamper with your footage. To prevent this, follow these straightforward tips to ensure your security cameras remain under your control.

1. Avoid Cheap or Second-Hand Cameras

While it might be tempting to buy an inexpensive or used security camera, doing so can put your privacy at risk. Unknown brands or knockoffs may have weak security features, making them easier to hack. Used cameras, even if reset, could still contain old software vulnerabilities or even hidden malware. Always choose reputable brands with good security records.

2. Choose Cameras with Strong Encryption

Encryption ensures that your video data is protected from unauthorized access. Look for brands that offer end-to-end encryption, which keeps your footage secure even if intercepted. Some brands, like Ring and Arlo, provide full encryption options, while others offer partial protection. The more encryption a company provides, the better your data is protected.

3. Research Security Reputation Before Buying

Before purchasing a camera, check if the company has a history of data breaches or security flaws. Some brands have had incidents where hackers accessed user data, so it’s essential to choose a manufacturer with a strong commitment to cybersecurity. Look for companies that use offline storage or advanced security features to minimize risks.

4. Strengthen Your Wi-Fi and App Passwords

A weak Wi-Fi password can allow hackers to access all connected devices in your home, including security cameras. Always use a strong, unique password for both your Wi-Fi network and camera app. Enable encryption on your router, activate built-in firewalls, and consider using a virtual private network (VPN) for extra protection. If you experience life changes like moving or breaking up with a partner, update your passwords to prevent unauthorized access.

5. Keep Your Camera Software Updated

Security camera companies regularly release updates to fix vulnerabilities and improve protection. If your camera has an option for automatic updates, turn it on. If not, make sure to check for updates manually through your camera app to ensure your system has the latest security patches.

6. Enable Two-Factor Authentication (2FA)

Two-factor authentication adds an extra layer of security by requiring a second verification step, such as a text message or email code, before logging in. This prevents unauthorized users from accessing your camera, even if they have your password.


Modern security cameras are much safer than before, thanks to improved encryption and security features. Most hacking attempts happen when users fail to secure their accounts or choose unreliable brands. However, there is still a risk if the camera company itself experiences a data breach. To minimize exposure, consider cameras with local storage or privacy covers for indoor models.

Who Tries to Hack Security Cameras?

In most cases, security cameras are not hacked by strangers. Instead, unauthorized access usually comes from people you know, such as an ex-partner or family member who already has login details. Occasionally, unethical employees at security companies have been caught misusing access. Ensuring strong passwords, encryption, and additional security measures can help prevent these issues.

By following these simple steps, you can keep your security cameras safe from hackers and ensure your home remains private and secure.


Hackers Leak 15,000 FortiGate Device Configs, IPs, and VPN Credentials

 

A newly identified hacking group, the Belsen Group, has leaked critical data from over 15,000 FortiGate devices on the dark web, making sensitive technical details freely available to cybercriminals. The leak includes configuration files, IP addresses, and VPN credentials, significantly increasing security risks for affected organizations. 

Emerging on cybercrime forums and social media just this month, the Belsen Group has been actively promoting itself. As part of its efforts, the group launched a Tor website where it released the stolen FortiGate data, seemingly as a way to establish its presence in the hacking community. In a post on an underground forum, the group claimed responsibility for breaching both government and private-sector systems, highlighting this operation as its first major attack. 

The exposed data is structured within a 1.6 GB archive, organized by country. Each country’s folder contains multiple subfolders corresponding to specific FortiGate device IP addresses. Inside, configuration files such as configuration.conf store FortiGate system settings, while vpn-passwords.txt holds various credentials, some of which remain in plaintext. 

Cybersecurity researcher Kevin Beaumont examined the leak and confirmed that these files include firewall rules, private keys, and other highly sensitive details that could be exploited by attackers. Further analysis suggests that the breach is linked to a known vulnerability from 2022—CVE-2022-40684—which was actively exploited before Fortinet released a security patch. 

According to Beaumont, evidence from a forensic investigation into a compromised device revealed that this zero-day vulnerability provided attackers with initial access. The stolen data appears to have been gathered in October 2022, around the same time this exploit was widely used. Fortinet had previously warned that CVE-2022-40684 was being leveraged by attackers to extract system configurations and create unauthorized super-admin accounts under the name fortigate-tech-support. 

Reports from the German news site Heise further confirm that the leaked data originates from devices running FortiOS firmware versions 7.0.0-7.0.6 or 7.2.0-7.2.2. The fact that FortiOS 7.2.2 was specifically released to address this vulnerability raises questions about whether some systems remained compromised even after the fix was made available. 

Although the leaked files were collected over two years ago, they still pose a significant threat. Configuration details, firewall rules, and login credentials could still be exploited if they were not updated after the original breach. Given the scale of the leak, cybersecurity experts strongly recommend that administrators review their FortiGate device settings, update passwords, and ensure that no outdated configurations remain in use.

Hackers Leak 8,500 Files from Lexipol, Exposing U.S. Police Training Manuals

 

An anonymous hacker group called the “puppygirl hacker polycule” recently made headlines by leaking over 8,500 files from Lexipol, a private company that provides training materials and policy manuals for police departments across the United States. 

As first reported by The Daily Dot, the data breach exposed internal documents, including thousands of police policies, emails, phone numbers, addresses, and other sensitive information about Lexipol employees. The hackers published the stolen data on Distributed Denial of Secrets (DDoS), a nonprofit platform for leaked information. In a statement, the group said they targeted Lexipol because, in their view, there aren’t “enough hacks against the police,” so they took action themselves.  

Founded in 2003, Texas-based Lexipol LLC, also known for its online training platform PoliceOne, has become a significant force in police privatization. The company supplies policy manuals and training content to more than 20% of U.S. police departments, according to a 2022 Indiana Law Journal analysis. This widespread adoption has effectively shaped public policy, despite Lexipol being a private company. 

Critics have long raised concerns about Lexipol’s focus on minimizing legal liability for police departments rather than addressing issues like excessive force or racial profiling. The Intercept reported in 2020 that Lexipol’s training materials, used by the NYPD after the George Floyd protests, prioritized protecting departments from lawsuits rather than promoting accountability or reform. 

Additionally, Lexipol has actively opposed proposed changes to police use-of-force standards, favoring a more lenient “objectively reasonable” standard. The leaked documents revealed striking similarities in policy language across different police departments, with matching sections on use-of-force protocols and even identical “Code of Ethics” pages — some ending with a religious oath dedicating officers to their profession before God. 

Despite Lexipol’s intent to reduce legal risks for its clients, some police departments using its policies have faced legal consequences. In 2017, Culver City, CA, adopted a Lexipol manual that suggested detaining suspected undocumented immigrants based on “lack of English proficiency,” contradicting the city’s sanctuary status. Similarly, Spokane, WA, paid a $49,000 settlement in 2018 after police violated local immigration laws using Lexipol’s guidance. 

Although the puppygirl hacker polycule isn’t linked to previous major breaches, their tactics echo those of SiegedSec, a group known for hacking government sites and playfully demanding research into “IRL catgirls.” As political tensions rise, the hackers predict more “hacktivist” attacks, aiming to expose injustices and empower public awareness. The Lexipol breach serves as a stark reminder of the vulnerabilities in privatized law enforcement systems and the growing influence of cyberactivism.

Hackers Exploit ThinkPHP and ownCloud Vulnerabilities from 2022 and 2023

 

Hackers are increasingly exploiting outdated security flaws in poorly maintained systems, with vulnerabilities from 2022 and 2023 seeing a surge in attacks. According to threat intelligence platform GreyNoise, malicious actors are actively targeting CVE-2022-47945 and CVE-2023-49103, affecting the ThinkPHP Framework and the open-source ownCloud file-sharing solution. 

Both vulnerabilities are critical, allowing attackers to execute arbitrary commands or steal sensitive data, such as admin credentials and license keys. CVE-2022-47945 is a local file inclusion (LFI) flaw in ThinkPHP versions before 6.0.14. If the language pack feature is enabled, unauthenticated attackers can remotely execute operating system commands. 

Akamai reported that Chinese threat groups have exploited this flaw since late 2023, and GreyNoise recently detected 572 unique IPs actively attacking vulnerable systems. Despite having a low Exploit Prediction Scoring System (EPSS) rating of just 7% and not being listed in CISA’s Known Exploited Vulnerabilities (KEV) catalog, CVE-2022-47945 remains under heavy assault. 

The second vulnerability, CVE-2023-49103, impacts ownCloud’s file-sharing software. It stems from a third-party library that leaks PHP environment details through a public URL. After its disclosure in November 2023, hackers began exploiting the flaw to steal sensitive data. A year later, it was named one of the FBI, CISA, and NSA’s top 15 most exploited vulnerabilities. 

Even though a patch was released over two years ago, many ownCloud systems remain unpatched and exposed. GreyNoise recently observed malicious activity from 484 unique IPs targeting this vulnerability. To defend against these active threats, users are strongly advised to upgrade to ThinkPHP 6.0.14 or later and ownCloud GraphAPI 0.3.1 or newer. 

Taking vulnerable systems offline or placing them behind a firewall can significantly reduce the attack surface and prevent exploitation. As hackers continue to leverage older, unpatched vulnerabilities, staying vigilant with timely updates and robust security practices remains crucial in protecting critical systems and sensitive data.

Cybercriminals Are Now Targeting Identities Instead of Malware

 



The way cybercriminals operate is changing. Instead of using malicious software to break into systems, they are now focusing on stealing and exploiting user identities. A recent cybersecurity report shows that three out of four cyberattacks involve stolen login credentials rather than traditional malware. This trend is reshaping the way security threats need to be addressed.

Why Hackers Are Relying on Stolen Credentials

The underground market for stolen account details has grown rapidly, making user identities a prime target for cybercriminals. With automated phishing scams, artificial intelligence-driven attacks, and social engineering techniques, hackers can gain access to sensitive data without relying on malicious software. 

According to cybersecurity experts, once a hacker gains access using valid credentials, they can bypass security barriers with ease. Many organizations focus on preventing external threats but struggle to detect attackers who appear to be legitimate users. This raises concerns about how companies can defend against these invisible intrusions.

Speed of Cyberattacks Is Increasing

Another alarming discovery is that hackers are moving faster than ever once they gain access. The shortest recorded time for a cybercriminal to spread through a system was just over two minutes. This rapid escalation makes it difficult for security teams to respond in time.

Traditional cybersecurity tools are designed to detect malware and viruses, but identity-based attacks leave no obvious traces. Instead, hackers manipulate system tools and access controls to remain undetected for extended periods. This technique, known as "living-off-the-land," enables them to blend in with normal network activity.

Attackers Are Infiltrating Multiple Systems

Modern cybercriminals do not confine themselves to a single system. Once they gain access, they move between cloud storage, company networks, and online services. This flexibility makes them harder to detect and stop.

Security experts warn that attackers often stay hidden in networks for months, waiting for the right moment to strike. Organizations that separate security measures—such as cloud security, endpoint protection, and identity management—often create loopholes that criminals exploit to maintain access and avoid detection.

AI’s Role in Cybercrime

Hackers are also taking advantage of artificial intelligence to refine their attacks. AI-driven tools help them crack passwords, manipulate users into revealing information, and automate large-scale cyber threats more efficiently than ever before. This makes it crucial for organizations to adopt equally advanced security measures to counteract these threats.

How to Strengthen Cybersecurity

Since identity theft is now a primary method of attack, organizations need to rethink their approach to cybersecurity. Here are some key strategies to reduce risk:

1. Enable Multi-Factor Authentication (MFA): This adds extra layers of protection beyond passwords.
2. Monitor Login Activities: Unusual login locations or patterns should be flagged and investigated.
3. Limit Access to Sensitive Data: Employees should only have access to the information they need for their work.
4. Stay Updated on Security Measures: Companies must regularly update their security protocols to stay ahead of evolving threats.


As hackers refine their techniques, businesses and individuals must prioritize identity security. By implementing strong authentication measures and continuously monitoring for suspicious activity, organizations can strengthen their defenses and reduce the risk of unauthorized access.