Search This Blog

Powered by Blogger.

Blog Archive

Labels

Footer About

Footer About

Labels

Showing posts with label Ivanti security flaws. Show all posts

Ivanti Issues Emergency Fixes After Attackers Exploit Critical Flaws in Mobile Management Software




Ivanti has released urgent security updates for two serious vulnerabilities in its Endpoint Manager Mobile (EPMM) platform that were already being abused by attackers before the flaws became public. EPMM is widely used by enterprises to manage and secure mobile devices, which makes exposed servers a high-risk entry point into corporate networks.

The two weaknesses, identified as CVE-2026-1281 and CVE-2026-1340, allow attackers to remotely run commands on vulnerable servers without logging in. Both flaws were assigned near-maximum severity scores because they can give attackers deep control over affected systems. Ivanti confirmed that a small number of customers had already been compromised at the time the issues were disclosed.

This incident reflects a broader pattern of severe security failures affecting enterprise technology vendors in January in recent years. Similar high-impact vulnerabilities have previously forced organizations to urgently patch network security and access control products. The repeated targeting of these platforms shows that attackers focus on systems that provide centralized control over devices and identities.

Ivanti stated that only on-premises EPMM deployments are affected. Its cloud-based mobile management services, other endpoint management products, and environments using Ivanti cloud services with Sentry are not impacted by these flaws.

If attackers exploit these vulnerabilities, they can move within internal networks, change system settings, grant themselves administrative privileges, and access stored information. The exposed data may include basic personal details of administrators and device users, along with device-related information such as phone numbers and location data, depending on how the system is configured.

Ivanti has not provided specific indicators of compromise because only a limited number of confirmed cases are known. However, the company published technical analysis to support investigations. Security teams are advised to review web server logs for unusual requests, particularly those containing command-like input. Exploitation attempts may appear as abnormal activity involving internal application distribution or Android file transfer functions, sometimes producing error responses instead of successful ones. Requests sent to error pages using unexpected methods or parameters should be treated as highly suspicious.

Previous investigations show attackers often maintain access by placing or modifying web shell files on application error pages. Security teams should also watch for unexpected application archive files being added to servers, as these may be used to create remote connections back to attackers. Because EPMM does not normally initiate outbound network traffic, any such activity in firewall logs should be treated as a strong warning sign.

Ivanti advises organizations that detect compromise to restore systems from clean backups or rebuild affected servers before applying updates. Attempting to manually clean infected systems is not recommended. Because these flaws were exploited before patches were released, organizations that had vulnerable EPMM servers exposed to the internet at the time of disclosure should treat those systems as compromised and initiate full incident response procedures rather than relying on patching alone. 

December Patch Tuesday Brings Critical Microsoft, Notepad++, Fortinet, and Ivanti Security Fixes

 


While December's Patch Tuesday gave us a lighter release than normal, it arrived with several urgent vulnerabilities that need attention immediately. In all, Microsoft released 57 CVE patches to finish out 2025, including one flaw already under active exploitation and two others that were publicly disclosed. Notably, critical security updates also came from Notepad++, Ivanti, and Fortinet this cycle, making it particularly important for system administrators and enterprise security teams alike. 

The most critical of Microsoft's disclosures this month is CVE-2025-62221, a Windows Cloud Files Mini Filter Driver bug rated 7.8 on the CVSS scale. It allows for privilege escalation: an attacker who has code execution rights can leverage the bug to escalate to full system-level access. Researchers say this kind of bug is exploited on a regular basis in real-world intrusions, and "patching ASAP" is critical. Microsoft hasn't disclosed yet which threat actors are actively exploiting this flaw; however, experts explain that bugs like these "tend to pop up in almost every big compromise and are often used as stepping stones to further breach". 

Another two disclosures from Microsoft were CVE-2025-54100 in PowerShell and CVE-2025-64671, impacting GitHub Copilot for JetBrains. Although these are not confirmed to be exploited, they were publicly disclosed ahead of patching. Graded at 8.4, the Copilot vulnerability would have allowed for remote code execution via malicious cross-prompt injection, provided a user is tricked into opening untrusted files or connecting to compromised servers. Security researchers expect more vulnerabilities of this type to emerge as AI-integrated development tools expand in usage. 

But one of the more ominous developments outside Microsoft belongs to Notepad++. The popular open-source editor pushed out version 8.8.9 to patch a weakness in the way updates were checked for authenticity. Attackers were managing to intercept network traffic from the WinGUp update client, then redirecting users to rogue servers, where malicious files were downloaded instead of legitimate updates. There are reports that threat groups in China were actively testing and exploiting this vulnerability. Indeed, according to the maintainer, "Due to the improper update integrity validation, an adversary was able to manipulate the download"; therefore, users should upgrade as soon as possible. 

Fortinet also patched two critical authentication bypass vulnerabilities, CVE-2025-59718 and CVE-2025-59719, in FortiOS and several related products. The bugs enable hackers to bypass FortiCloud SSO authentication using crafted SAML messages, which only works if SSO has been enabled. Administrators are advised to disable the feature until they can upgrade to patched builds to avoid unauthorized access. Rounding out the disclosures, Ivanti released a fix for CVE-2025-10573, a severe cross-site scripting vulnerability in its Endpoint Manager. The bug allows an attacker to register fake endpoints and inject malicious JavaScript into the administrator dashboard. Viewed, this could serve an attacker full control over the session without credentials. There has been no observed exploitation so far, but researchers warn that it is likely attackers will reverse engineer the fix soon, making for a deployment environment of haste.

Lessons from the Ivanti VPN Cyberattack: Security Breaches and Mitigation Strategies

 

The recent cyberattack on Ivanti’s VPN software has prompted swift action from the Cybersecurity and Infrastructure Security Agency (CISA). This incident not only highlights the need for stronger cybersecurity measures but also raises important questions about exploit techniques, organizational responses to security breaches, and the escalating costs associated with downtime. 

The vulnerabilities in Ivanti’s VPN gateway allowed threat actors to bypass authentication and gain unauthorized access. Attackers could send maliciously crafted packets to infiltrate the system without needing to steal credentials, giving them access to user credentials, including domain administrator credentials. A second vulnerability enabled the injection of malicious code into the Ivanti appliance, allowing attackers to maintain persistent access, even after reboots or patches. Security researchers, including Mandiant, identified that Ivanti’s initial mitigations were insufficient. 

CISA warned that Ivanti’s interim containment measures were not adequate to detect compromises, leaving systems vulnerable to persistent threats. This uncertainty about the effectiveness of proposed mitigations necessitated CISA’s prompt intervention. The ability of attackers to gain persistent access to a VPN gateway poses significant risks. From this trusted position, attackers can move laterally within the network, accessing critical credentials and data. The compromise of the VPN allowed attackers to take over stored privileged administrative account credentials, a much more severe threat than the initial breach. In response to the breach, CISA advised organizations to assume that critical credentials had been stolen. 

Ivanti’s failure to detect the compromise allowed attackers to operate within a trusted zone, bypassing zero-trust principles and exposing sensitive data to heightened risks. The severity of the vulnerabilities led CISA to take the unusual step of taking two of Ivanti’s systems offline, a decision made to protect the most sensitive credentials. Despite later clarifications from Ivanti that patches could have been applied more discreetly, the miscommunications highlight the importance of clear, open channels during a crisis. Mixed messages can lead to unnecessary chaos and confusion. System-level downtime is costly, both in terms of IT resources required for shutdown and recovery and the losses incurred from service outages. 

The exact cost of Ivanti’s downtime remains uncertain, but for mission-critical systems, such interruptions are extremely expensive. This incident serves as a warning about the costs of addressing the aftermath of a cyberattack. CISA’s decision to shut down the systems was based on the potential blast radius of the attack. The trusted position of the VPN gateway and the ability to export stored credentials made lateral movement easier for attackers. 

Building systems based on the principle of least privilege can help minimize the blast radius of attacks, reducing the need for broad shutdowns. The Ivanti VPN cyberattack underscores the pressing need for robust cybersecurity measures. Organizations must adopt proactive infrastructure design and response strategies to mitigate risks and protect critical assets. Reducing the number of high-value targets in IT infrastructure is crucial. Privileged account credentials and stored keys are among the highest value targets, and IT leaders should prioritize strategies and technologies that minimize or eliminate such targets. 

Researchers Uncover Numerous Chinese Hacker Collectives Exploiting Ivanti Security Vulnerabilities

 

Several threat actors with connections to China have been identified as responsible for exploiting three security vulnerabilities affecting Ivanti appliances. These vulnerabilities are identified as CVE-2023-46805, CVE-2024-21887, and CVE-2024-21893.

Mandiant, a cybersecurity firm, has been monitoring these clusters of threat actors, identifying them under the names UNC5221, UNC5266, UNC5291, UNC5325, UNC5330, and UNC5337. Among them, UNC3886, a Chinese hacking group, has been previously known for exploiting zero-day bugs in Fortinet and VMware systems to infiltrate networks.

Financially motivated actors have also been observed exploiting CVE-2023-46805 and CVE-2024-21887, likely for cryptocurrency mining purposes.

UNC5266 overlaps in part with UNC3569, a China-nexus espionage actor that has been observed exploiting vulnerabilities in Aspera Faspex, Microsoft Exchange, and Oracle Web Applications Desktop Integrator, among others, to gain initial access to target environments," Mandiant researchers said

Post-exploitation activities by these threat actors often involve deploying malicious tools such as the Sliver command-and-control framework, WARPWIRE credential stealer variant, and a new backdoor named TERRIBLETEA, which comes with various functionalities like command execution and keylogging.

UNC5330 has been combining CVE-2024-21893 and CVE-2024-21887 to target Ivanti Connect Secure VPN appliances, leveraging custom malware like TONERJAM and PHANTOMNET for further actions. These include reconnaissance, lateral movement, and compromising LDAP bind accounts for higher privileges.

UNC5337, another China-linked group, has been using CVE-2023-46805 and CVE-2024-218 to infiltrate Ivanti devices since January 2024, deploying a custom malware toolset known as SPAWN. This toolset includes components like SPAWNSNAIL, SPAWNMOLE, SPAWNANT, and SPAWNSLOTH, designed for stealthy and persistent backdoor access.

Mandiant assesses with medium confidence that UNC5337 and UNC5221 might be the same group, highlighting the sophistication of their tools aimed at avoiding detection.

UNC5221 has also been associated with various web shells and a Perl-based web shell called ROOTROT, which is embedded into legitimate files to evade detection. Successful deployment of these shells leads to network reconnaissance and lateral movement, potentially compromising vCenter servers with a Golang backdoor named BRICKSTORM.

Finally, UNC5291, likely associated with another group called UNC3236, has been targeting academic, energy, defense, and health sectors, focusing on Citrix Netscaler ADC initially before shifting to Ivanti Connect Secure devices.

These findings emphasize the ongoing threat posed by edge appliances, with threat actors utilizing a combination of zero-day vulnerabilities, open-source tools, and custom backdoors to evade detection and maintain access to networks for extended periods. access to target systems.