Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Microsoft. Show all posts

Microsoft: CLFS Zero-Day Flaw Exploited in Ransomware Attacks

 

Ransomware attackers abused a zero-day flaw in a widely used Windows logging system for managing transactional information to launch attacks against organisations in the US real estate sector, Microsoft revealed Tuesday. 

In a blog post, the tech giant stated that the perpetrators employed a previously unknown flaw discovered in Windows' Common Log File System - a popular target for malicious actors seeking privilege escalation - to attack "a small number of targets," including American real estate firms, a Spanish software company, Venezuela's financial sector, and Saudi Arabia's retail sector. 

The flaw, identified as CVE-2025-29824, has a CVSS score of 7.8 and has been added to the Cybersecurity and Infrastructure Security Agency's "Known Exploited Vulnerabilities Catalogue". 

Microsoft stated that Storm-2460, a ransomware threat actor, used the issue to spread PipeMagic malware. In March, the firm addressed a different bug in the Windows Win32 Kernel Subsystem that allowed hackers to escalate privileges to the system level, an exploit that researchers later linked to targeted assaults targeting Asian and Saudi organisations using a PipeMagic backdoor.

The tech behemoth said it "highly recommends organizations apply all available security updates for elevation of privilege flaws to add a layer of defense against ransomware attacks if threat actors are able to gain an initial foothold.”

Microsoft noted that it has not yet determined how Storm-2460 got access to compromised devices, although it did note that the organisation downloaded malware from a legitimate third-party website it had previously infiltrated using the Windows certutil application.

Following the deployment of PipeMagic, the attackers used a technique that prevented them from writing data to disc and enabled them to launch the log system exploit directly in memory. In a security update posted on Tuesday, the company stated that users of Windows 11, version 24H2, "are not affected by the observed exploitation, even if the vulnerability was present.”

Windows CLFS Zero-Day CVE-2025-29824 Exploited by Ransomware Group Storm-2460

 

A newly disclosed Windows zero-day vulnerability, tracked as CVE-2025-29824, is being actively exploited in cyberattacks to deliver ransomware, Microsoft has warned. This flaw affects the Windows Common Log File System (CLFS) driver and enables local privilege escalation—a method often used by attackers after gaining initial access. 

Microsoft’s Threat Intelligence and Security Response teams revealed that the bug is classified as a “use-after-free” vulnerability with a severity score of 7.8. While attackers need to compromise a system before they can exploit this flaw, it remains highly valuable in ransomware operations. Cybercriminals often rely on these types of vulnerabilities to turn a limited foothold into full administrative control across networks. 

The cybercrime group currently leveraging this zero-day is known as Storm-2460. Microsoft reports that the group is using the exploit to deploy a custom backdoor named PipeMagic, which in turn facilitates the installation of RansomEXX ransomware—a variant not commonly observed but still capable of serious disruption. So far, Storm-2460 has targeted organizations in industries such as IT, finance, and retail, with victims located in countries including the United States, Spain, Saudi Arabia, and Venezuela. 

Microsoft emphasized that the number of known cases remains small, but the sophistication of the exploit is concerning. This attack is notable for being part of a “post-compromise” campaign, meaning the attacker already has a presence within the system before using the flaw. These types of exploits are frequently used to escalate privileges and move laterally within a network, eventually leading to broader ransomware deployment. Microsoft issued a security advisory for CVE-2025-29824 on April 8 and urged organizations to install updates immediately. Failure to do so could leave critical systems vulnerable to privilege escalation and full network compromise. 

To mitigate risk, Microsoft advises businesses to prioritize patch management, restrict unnecessary administrative privileges, and closely monitor for unusual behavior across endpoints. Cybersecurity teams are also encouraged to review logs for any indicators of compromise related to PipeMagic or RansomEXX. As ransomware tactics continue to evolve, the exploitation of vulnerabilities like CVE-2025-29824 reinforces the need for proactive defense strategies and rapid incident response protocols.

New Sec-Gemini v1 from Google Outperforms Cybersecurity Rivals

 


A cutting-edge artificial intelligence model developed by Google called Sec-Gemini v1, a version of Sec-Gemini that integrates advanced language processing, real-time threat intelligence, and enhanced cybersecurity operations, has just been released. With the help of Google's proprietary Gemini large language model and dynamic security data and tools, this innovative solution utilizes its capabilities seamlessly to enhance security operations. 

A new AI model, Sec-Gemini v1 that combines sophisticated reasoning with real-time cybersecurity insights and tools has been released by Google. This integration makes the model extremely capable of performing essential security functions like threat detection, vulnerability assessment, and incident analysis. A key part of Google's effort to support progress across the broader security landscape is its initiative to provide free access to Sec-Gemini v1 to select institutions, professionals, non-profit organizations, and academic institutions to promote a collaborative approach to security research. 

Due to its integration with Google Threat Intelligence (GTI), the Open Source Vulnerabilities (OSV) database, and other key data sources, Sec-Gemini v1 stands out as a unique solution. On the CTI-MCQ threat intelligence benchmark and the CTI-Root Cause Mapping benchmark, it outperforms peer models by at least 11%, respectively. Using the CWE taxonomy, this benchmark assesses the model's ability to analyze and classify vulnerabilities.

One of its strongest features is accurately identifying and describing the threat actors it encounters. Because of its connection to Mandiant Threat Intelligence, it can recognize Salt Typhoon as a known adversary, which is a powerful feature. There is no doubt that the model performs better than its competitors based on independent benchmarks. According to a report from Security Gemini v1, compared to comparable AI systems, Sec-Gemini v1 scored at least 11 per cent higher on CTI-MCQ, a key metric used to assess threat intelligence capabilities. 

Additionally, it achieved a 10.5 per cent edge over its competitors in the CTI-Root Cause Mapping benchmark, a test that assesses the effectiveness of an AI model in interpreting vulnerability descriptions and classifying them by the Common Weakness Enumeration framework, an industry standard. It is through this advancement that Google is extending its leadership position in artificial intelligence-powered cybersecurity, by providing organizations with a powerful tool to detect, interpret, and respond to evolving threats more quickly and accurately. 

It is believed that Sec-Gemini v1 has the strength to be able to perform complex cybersecurity tasks efficiently, according to Google. Aside from conducting in-depth investigations, analyzing emerging threats, and assessing the impact of known vulnerabilities, you are also responsible for performing comprehensive incident investigations. In addition to accelerating decision-making processes and strengthening organization security postures, the model utilizes contextual knowledge in conjunction with technical insights to accomplish the objective. 

Though several technology giants are actively developing AI-powered cybersecurity solutions—such as Microsoft's Security Copilot, developed with OpenAI, and Amazon's GuardDuty, which utilizes machine learning to monitor cloud environments—Google appears to have carved out an advantage in this field through its Sec-Gemini v1 technology. 

A key reason for this edge is the fact that it is deeply integrated with proprietary threat intelligence sources like Google Threat Intelligence and Mandiant, as well as its remarkable performance on industry benchmarks. In an increasingly competitive field, these technical strengths place it at the top of the list as a standout solution. Despite the scepticism surrounding the practical value of artificial intelligence in cybersecurity - often dismissed as little more than enhanced assistants that still require a lot of human interaction - Google insists that Sec-Gemini v1 is fundamentally different from other artificial intelligence models out there. 

The model is geared towards delivering highly contextual, actionable intelligence rather than simply summarizing alerts or making basic recommendations. Moreover, this technology not only facilitates faster decision-making but also reduces the cognitive load of security analysts. As a result, teams can respond more quickly to emerging threats in a more efficient way. At present, Sec-Gemini v1 is being made available exclusively as a research tool, with access being granted only to a select set of professionals, academic institutions, and non-profit organizations that are willing to share their findings. 

There have been early signs that the model will make a significant contribution to the evolution of AI-driven threat defence, as evidenced by the model's use-case demonstrations and early results. It will introduce a new era of proactive cyber risk identification, contextualization, and mitigation by enabling the use of advanced language models. 

In real-world evaluations, the Google security team demonstrated Sec-Gemini v1's advanced analytical capabilities by correctly identifying Salt Typhoon, a recognized threat actor, with its accurate analytical capabilities. As well as providing in-depth contextual insights, the model provided in-depth contextual information, including vulnerability details, potential exploitation techniques, and associated risk levels. This level of nuanced understanding is possible because Mandiant's threat intelligence provides a rich repository of real-time threat data as well as adversary profiles that can be accessed in real time. 

The integration of Sec-Gemini v1 into other systems allows Sec-Gemini v1 to go beyond conventional pattern recognition, allowing it to provide more timely threat analysis and faster, evidence-based decision-making. To foster collaboration and accelerate model refinement, Google has offered limited access to Sec-Gemini v1 to a carefully selected group of cybersecurity practitioners, academics, and non-profit organizations to foster collaboration. 

To avoid a broader commercial rollout, Google wishes to gather feedback from trusted users. This will not only ensure that the model is more reliable and capable of scaling across different use cases but also ensure that it is developed in a responsible and community-led manner. During practical demonstrations, Google's security team demonstrated Sec-Gemini v1's ability to identify Salt Typhoon, an internationally recognized threat actor, with high accuracy, as well as to provide rich contextual information, such as vulnerabilities, attack patterns and potential risk exposures associated with this threat actor. 

Through its integration with Mandiant's threat intelligence, which enhances the model's ability to understand evolving threat landscapes, this level of precision and depth can be achieved. The Sec-Gemini v1 software, which is being made available for free to a select group of cybersecurity professionals, academic institutions, and nonprofit organizations, for research, is part of Google's commitment to responsible innovation and industry collaboration. 

Before a broader deployment of this model occurs, this initiative will be designed to gather feedback, validate use cases, and ensure that it is effective across diverse environments. Sec-Gemini v1 represents an important step forward in integrating artificial intelligence into cybersecurity. Google's enthusiasm for advancing this technology while ensuring its responsible development underscores the company's role as a pioneer in the field. 

Providing early, research-focused access to Sec-Gemini v1 not only fosters collaboration within the cybersecurity community but also ensures that Sec-Gemini v1 will evolve in response to collective expertise and real-world feedback, as Google offers this model to the community at the same time. Sec-Gemini v1 has demonstrated remarkable performance across industry benchmarks as well as its ability to detect and mitigate complex threats, so it may be able to change the face of threat defense strategies in the future. 

The advanced reasoning capabilities of Sec-Gemini v1 are coupled with cutting-edge threat intelligence, which can accelerate decision-making, cut response times, and improve organizational security. However, while Sec-Gemini v1 shows great promise, it is still in the research phase and awaiting wider commercial deployment. Using such a phased approach, it is possible to refine the model carefully, ensuring that it adheres to the high standards that are required by various environments. 

For this reason, it is very important that stakeholders, such as cybersecurity experts, researchers, and industry professionals, provide valuable feedback during the first phase of the model development process, to ensure that the model's capabilities are aligned with real-world scenarios and needs. This proactive stance by Google in engaging the community emphasizes the importance of integrating AI responsibly into cybersecurity. 

This is not solely about advancing the technology, but also about establishing a collaborative framework that can make it easier to detect and respond to emerging cyber threats more effectively, more quickly, and more securely. The real issue is the evolution of Sec-Gemini version 1, which may turn out to be one of the most important tools for safeguarding critical systems and infrastructure around the globe in the future.

Lazarus Gang Targets Job Seekers to Install Malware

Lazarus Gang Targets Job Seekers to Install Malware

North Korean hackers responsible for Contagious Interview are trapping job seekers in the cryptocurrency sector by using the popular ClickFix social-engineering attack strategy. They aimed to deploy a Go-based backdoor— earlier undocumented— known as GolangGhost on Windows and macOS systems. 

Hackers lure job seekers

The latest attack, potentially a part of a larger campaign, goes by the codename ClickFake Interview, according to French cybersecurity company Sekoia. Aka DeceptiveDeployment, DEV#POPPER, and Famoys Chollima; Contagious Interview has been active since December 2022, however, it was publicly reported only after late 2023. 

The attack uses legitimate job interview sites to promote the ClickFix tactic and deploy Windows and MacOS backdoors, said Sekoia experts Amaury G., Coline Chavane, and Felix Aimé, attributing the attack to the notorious Lazarus Group. 

Lazarus involved

One major highlight of the campaign is that it mainly attacks centralized finance businesses by mimicking firms like Kraken, Circle BlockFi, Coinbase, KuCoin, Robinhood, Tether, and Bybit. Traditionally, Lazarus targeted decentralized finance (DeFi) entities. 

Attack tactic explained

Like Operation Dream Job, Contagious Interview also uses fake job offers as traps to lure potential victims and trick them into downloading malware to steal sensitive data and cryptocurrency. The victims are approached via LinkedIn or X to schedule a video interview and asked to download malware-laced video conference software that triggers the infection process. 

Finding of Lazarus ClickFix attack

Security expert Tayloar Monahan first reported the Lazarus Group’s use of ClickFix in late 2022, saying the attack chains led to the installment of a malware strain called FERRET that delivered the Golang backdoor. In this malware campaign, the victims are prompted to use a video interview, ‘Willow,’ and do a sell video assessment. 

The whole process is carefully built to gain users and “proceeds smoothly until the user is asked to enable their camera,” Sekoia said. At this stage, an “error message appears, indicating that the user needs to download a driver to fix the issue. This is where the operator employs the ClickFix technique," adds Sekoia. 

Different attack tactics for Windows and MacOS users

The prompts given to victims may vary depending on the OS. For Windows, victims are asked to open the Command Prompt and run a curl command to perform a Visual Basic Script (VBS) file to launch a basic script to run GolanGhost. MacOS victims are prompted to open the Terminal app and perform a curl command to run a malicious shell script, which then runs another shell script that runs a stealer module called FROSTYFERRET—aka ChromwUpdateAlert— and the backdoor. 

Hacker's Dual Identity: Cybercriminal vs Bug Bounty Hunter

Hacker's Dual Identity: Cybercriminal vs Bug Bounty Hunter

EncryptHub is an infamous threat actor responsible for breaches at 618 organizations. The hacker reported two Windows zero-day flaws to Microsoft, exposing a conflicted figure that blurs the lines between cybercrime and security research. 

The reported flaws are CVE-2025-24061 (Mark of the Web bypass) and CVE-2025-24071 (File Explorer spoofing), which Microsoft fixed in its March 2025 Patch Tuesday updates, giving credit to the reporter as ‘SkorikARI.’ In this absurd incident, the actor had dual identities—EncryptHub and SkorikARI. The entire case shows us an individual who works in both cybersecurity and cybercrime. 

Discovery of EncryptHub’s dual identity 

Outpost24 linked SkorikARI and EncryptHub via a security breach, where the latter mistakenly revealed their credentials, exposing links to multiple accounts. The disclosed profile showed the actor’s swing between malicious activities and cybersecurity operations. 

Actor tried to sell zero-day on dark web

Outpost24’ security researcher Hector Garcia said the “hardest evidence was from the fact that the password files EncryptHub exfiltrated from his system had accounts linked to both EncryptHub” such as credentials to EncryptRAT- still in development, or “his account on xss.is, and to SkorikARI, like accesses to freelance sites or his own Gmail account.” 

Garcia also said there was a login to “hxxps://github[.]com/SkorikJR,” which was reported in July’s Fortinet story about Fickle Stealer; this helped them solve the puzzle. Another big reveal of the links to dual identity was ChatGPT conversations, where activities of both SkorikARI and EncryptHub could be found. 

Zero-day activities and operational failures in the past

Evidence suggests this wasn't EncryptHub's first involvement with zero-day flaws, as the actor has tried to sell it to other cybercriminals on hacking forums.

Outpost24 highlighted EncryptHub's suspicious activities- oscillating between cybercrime and freelancing. An accidental operational security (OPSEC) disclosed personal information despite their technical expertise. 

EncryptHub and ChatGPT 

Outpost24 found EncryptHub using ChatGPT to build phishing sites, develop malware, integrate code, and conduct vulnerability research. One ChatGPT conversation included a self-assessment showing their conflicted nature: “40% black hat, 30% grey hat, 20% white hat, and 10% uncertain.” The conversation also showed plans for massive (although harmless) publicity stunts affecting tens of thousands of computers.

Impact

EncryptHub has connections with ransomware groups such as BlackSuit and RansomHub who are known for their phishing attacks, advanced social engineering campaigns, and making of Fickle Stealer- a custom PowerShell-based infostealer. 

Ransomware Found in VSCode Extensions Raises Concerns Over Microsoft’s Security Review

 

Cybersecurity experts have discovered ransomware hidden within two Visual Studio Code (VSCode) Marketplace extensions, raising concerns about Microsoft’s ability to detect malicious software in its platform. The compromised extensions, named “ahban.shiba” and “ahban.cychelloworld,” were downloaded by users before security researchers flagged them and they were subsequently removed. 

Despite Microsoft’s security measures, the extensions remained publicly accessible for a significant period, highlighting potential gaps in the company’s review process. The “ahban.cychelloworld” extension was first uploaded on October 27, 2024, followed by “ahban.shiba” on February 17, 2025. The VSCode Marketplace, designed to provide developers with additional tools for Microsoft’s popular coding platform, has come under scrutiny for failing to identify these threats. 

Researchers at ReversingLabs determined that both extensions included a PowerShell script that connected to a remote Amazon Web Services (AWS) server to download further malicious code. This secondary payload functioned as ransomware, though evidence suggests it was still in a testing phase. 

Unlike traditional ransomware that encrypts entire systems, this malware specifically targeted files stored in C:\users%username%\Desktop\testShiba.  Once the encryption was complete, victims received a Windows notification stating: “Your files have been encrypted. Pay 1 ShibaCoin to ShibaWallet to recover them.” However, no further instructions or payment details were provided, suggesting the malware was not yet fully developed.  

Although Microsoft eventually removed the extensions, security researcher Italy Kruk from ExtensionTotal disclosed that their automated detection system had identified the malicious code much earlier. Kruk stated that they had alerted Microsoft about the issue but received no response. Further analysis revealed that the initial version of “ahban.cychelloworld” was clean, but the ransomware was introduced in version 0.0.2, which was released on November 24, 2024. ExtensionTotal flagged this version to Microsoft on November 25, yet the extension remained available for months. 

During this time, five more versions were uploaded, all containing the same ransomware. This case has intensified concerns about Microsoft’s ability to monitor third-party extensions effectively. The security lapse within the VSCode Marketplace highlights the risk developers face when downloading extensions, even from official sources. Microsoft has previously faced criticism for both slow responses to security threats and for mistakenly removing non-malicious extensions. 

A notable example involved two popular VSCode themes, ‘Material Theme – Free’ and ‘Material Theme Icons – Free,’ which were taken down due to suspected obfuscated JavaScript. However, after further review, Microsoft determined the extensions were safe, reinstated them, and apologized, promising improvements to its security screening process. The presence of ransomware in widely used developer tools underscores the need for stronger security measures. Developers must stay cautious, regularly update security protocols, and carefully evaluate third-party extensions before installing them, even when they come from official platforms like the VSCode Marketplace.

Microsoft Warns of Malvertising Campaign Impacting Over 1 Million Devices Worldwide

 

Microsoft has revealed details of a large-scale malvertising campaign that is believed to have impacted over one million devices worldwide as part of an opportunistic attack aimed at stealing sensitive information. 

The tech giant, which discovered the activity in early December 2024, is tracking it under the broader Storm-0408 umbrella, which refers to a group of attackers known for distributing remote access or information-stealing malware via phishing, search engine optimisation (SEO), or malvertising.

"The attack originated from illegal streaming websites embedded with malvertising redirectors, leading to an intermediary website where the user was then redirected to GitHub and two other platforms," the Microsoft Threat Intelligence team stated. "The campaign impacted a wide range of organizations and industries, including both consumer and enterprise devices, highlighting the indiscriminate nature of the attack.”

The campaign relied on GitHub to deliver initial access payloads, but payloads were also detected on Discord and Dropbox. The GitHub repositories were removed, but the number of such repositories was not disclosed. The Microsoft-owned code hosting service serves as a staging ground for dropper malware, which deploys a series of ads.

The Microsoft-owned code hosting site serves as a staging ground for dropper malware, which is in charge of launching a number of further programs such as Lumma Stealer and Doenerium, which can then collect system information. The assault also uses a sophisticated redirection chain with four to five layers, with the first redirector embedded in an iframe element on unlawful streaming websites that serve pirated content.

The entire infection sequence consists of several stages, including system discovery, information collecting, and the employment of follow-on payloads like NetSupport RAT and AutoIT scripts to assist more data theft. The remote access trojan also acts as a gateway for stealer malware. 

  • First stage: Establish a footing on target devices.
  • Second stage: system reconnaissance, collection, exfiltration, and payload delivery. 
  • Third stage: It involves command execution, payload delivery, defence evasion, persistence, command-and-control communications, and data exfiltration. 
  • Fourth stage: PowerShell script for configuring Microsoft Defender exclusions and running commands to download data from a remote server. 

Another feature of the assaults is the use of numerous PowerShell scripts to download NetSupport RAT, identify installed apps and security software, and scan for the presence of cryptocurrency wallets, which indicates possible financial data theft.

"Besides the information stealers, PowerShell, JavaScript, VBScript, and AutoIT scripts were run on the host," Microsoft said. "The threat actors incorporated use of living-off-the-land binaries and scripts (LOLBAS) like PowerShell.exe, MSBuild.exe, and RegAsm.exe for C2 and data exfiltration of user data and browser credentials.” 

The disclosure comes after Kaspersky reported that fake websites masquerading as DeepSeek and Grok artificial intelligence (AI) chatbots are being used to lure users into installing a previously unknown Python information stealer.

DeekSeek-themed decoy sites promoted by verified accounts on X (e.g., @ColeAddisonTech, @gaurdevang2, and @saduq5) have also been used to run a PowerShell script that leverages SSH to enable attackers remote access to the machine. 

"Cybercriminals use various schemes to lure victims to malicious resources,' the Russian cybersecurity company noted. "Typically, links to such sites are distributed through messengers and social networks. Attackers may also use typosquatting or purchase ad traffic to malicious sites through numerous affiliate programs.”

Microsoft Unearths Novel XCSSET macOS Malware Variant Targeting Xcode Projects

 

Microsoft Threat Intelligence identified a new strain of XCSSET, a complex modular macOS malware that targets Xcode programs. The malware was discovered in the wild during routine threat hunting, and it is the first known XCSSET variant to appear since 2022. 

This latest version of XCSSET includes improved obfuscation methods, updated tactics for maintaining persistence on infected workstations, and new ways to infect systems. These enhancements enable the malware to steal and exfiltrate files, as well as sensitive system and user information, such as digital wallet data and private notes.

XCSSET is meant to infect Xcode projects and runs when a developer builds them. Since Xcode is frequently used by Apple and macOS developers, Microsoft believes the malware spreads by exploiting shared project files amongst developers. While this edition has some similarities with previous versions, it features a more modular structure and encoded payloads. 

Harder to detect and eliminate 

In order to evade detection by security, it also has improved error handling and makes extensive use of scripting languages, UNIX commands, and genuine system binaries. It can sometimes even function without leaving files on disc, which makes them more challenging to locate and delete. To make it harder for analysts to comprehend its operations, the malware conceals the names of its modules at the code level. 

Additionally, it employs more sophisticated obfuscation techniques, like randomly generating and encoding payloads when infecting Xcode projects. The most recent version of XCSSET also employs Base64 for encoding, in contrast to previous versions that solely used xxd (hexdump). 

To ensure that it continues to run, the malware exploits three separate persistence methods: it runs when a new shell session is started, when a user opens a fake Launchpad program, or when a user makes a Git commit. It also includes a new method for injecting malware payloads directly into targeted Xcode projects. 

Microsoft's analysis also revealed that some of the malware appears to be still in development. Its command-and-control (C2) server was operational at the time Microsoft released its report, and it was releasing new modules. Microsoft recommends developers and security teams to remain careful and keep an eye on their Xcode projects and environments for any unusual activity. 

Surge in macOS assaults 

The latest ransomware is just one example of the sophisticated attacks that have increased against macOS systems, according to Thomas Richards, Principal Consultant, Network and Red Team Practice Director at Black Duck. 

“The techniques seen in this malware show that the developers spent a considerable amount of time researching ways to remain undetected. Gone are the days where macOS users could operate without installing anti-virus or EDR software. To prevent these attacks from spreading, users of Xcode should make sure their endpoint protection software is up to date and run scans to determine if they’ve been infected or not,” Richards stated. 

Threat to Apple developers 

With its improved ability to conceal within Xcode projects and propagate when these projects are shared between teams, this new XCSSET variant poses a serious threat to Apple developers, stated J Stephen Kowski, Field CTO at SlashNext. 

“This sophisticated attack targets the software supply chain at its source, potentially compromising apps before they’re even built, with the malware’s improved obfuscation techniques and multiple persistence methods making it particularly difficult to detect. Real-time code scanning and advanced threat detection tools that can identify suspicious behaviors in development environments are essential for protecting against these types of attacks,” Kowski noted.

He recommends developers to use multi-layered security measures, such as constant monitoring of project files for unexpected changes and rigorous verification of all code sources prior to integration.