Search This Blog

Powered by Blogger.

Blog Archive

Labels

Showing posts with label critical. Show all posts

Cyberattacks on Critical Infrastructure: A Growing Threat to Global Security

 

During World War II, the U.S. Army Air Forces launched two attacks on ball bearing factories in Schweinfurt, aiming to disrupt Germany’s ability to produce machinery for war. The belief was that halting production would significantly affect Germany’s capacity to manufacture various war machines.

This approach has a modern parallel in the cybersecurity world. A cyberattack on a single industry can ripple across multiple sectors. For instance, the Colonial Pipeline attack affected American Airlines operations at Charlotte Douglas Airport. Similarly, the Russian NotPetya attack against Ukraine spilled onto the internet, impacting supply chains globally.

At the 2023 S4 Conference, Josh Corman discussed the potential for cascading failures due to cyberattacks. The creation of the Cybersecurity and Infrastructure Security Agency’s National Critical Functions was driven by the need to coordinate cybersecurity efforts across various critical sectors. Corman highlighted how the healthcare sector depends on several infrastructure sectors, such as water, energy, and transportation, to provide patient care.

The question arises: what if a cyber incident affected multiple segments of the economy at once? The consequences could be devastating.

What makes this more concerning is that it's not a new issue. The SQL Slammer virus, which appeared over two decades ago, compromised an estimated one in every 1,000 computers globally. Unlike the recent CrowdStrike bug, Slammer was an intentional exploit that remained unpatched for over six months. Despite differences between the events, both show that software vulnerabilities can be exploited, regardless of intent.

Digital technology now underpins everything from cars to medical devices. However, as technology becomes more integrated into daily life, it brings new risks. Research from Claroty’s Team82 reveals that insecure code and misconfigurations exist in software that controls physical systems, posing potential threats to national security, public safety, and economic stability.

Although the CrowdStrike incident was disruptive, businesses and governments must reflect on the event to prevent larger, more severe cyber incidents in the future.

Cyber-Physical Systems: A Shifting Threat Landscape

Nearly every facility, from water treatment plants to hospitals, relies on digital systems known as cyber-physical systems (CPS) to function. These systems manage critical tasks, but they also introduce vulnerabilities. Today, billions of tiny computers are embedded in systems across all industries, offering great benefits but also exposing the soft underbelly of society to cyber threats.

The Stuxnet malware attack in 2014, which disrupted Iran's nuclear program, was the first major cyber assault on CPS. Since then, there have been several incidents, including the 2016 Russian Industroyer malware attack that disrupted part of Ukraine’s power grid, and the 2020 Iranian attempt to attack Israeli water utilities. Most recently, Chinese hackers have targeted U.S. critical infrastructure.

These incidents highlight how cybercriminals and nation states exploit vulnerabilities in critical infrastructure to understand weaknesses and the potential impact on security. China, for example, has expanded its objectives from espionage to compromising U.S. infrastructure to weaken its defense capabilities in case of a conflict.

The CrowdStrike Bug and Broader Implications

The CrowdStrike bug wasn’t a malicious attack but rather a mistake tied to a gap in quality assurance. Still, the incident serves as a reminder that our dependence on digital systems has grown significantly. Failures in cyber-physical systems—whether in oil pipelines, manufacturing plants, or hospitals—can have dangerous physical consequences.

Although attacks on CPS are relatively rare, many of these systems still rely on outdated technology, including Windows operating systems, which account for over 25% of vulnerabilities in the CISA Known Exploited Vulnerabilities Catalog. Coupled with long periods of technological obsolescence, these vulnerabilities pose significant risks.

What would happen if a nation-state deliberately targeted CPS in critical infrastructure? The potential consequences could be far worse than the CrowdStrike bug.

Addressing the vulnerabilities in CPS will take time, but there are several steps that can be taken immediately:

  • Operationalize compensating controls: Organizations must inventory assets and implement network segmentation and secure access to protect vulnerable systems.
  • Expand secure-by-design principles: CISA has emphasized the need to focus on secure-by-design in CPS, particularly for medical devices and automation systems.
  • Adopt secure-by-demand programs: Organizations should ask the right questions of software vendors during procurement to ensure higher security standards.
Although CPS drive innovation, they also introduce new risks. A failure in one link of the global supply chain could cascade across industries, disrupting critical services. The CrowdStrike bug wasn’t a malicious attack, but it underscores the fragility of modern infrastructure and the need for vigilance to prevent future incidents