Search This Blog

Powered by Blogger.

Blog Archive

Labels

Showing posts with label electromagnetic interference. Show all posts

Researchers Develop 'VoltSchemer' Assaults Aimed at Wireless Charging Systems

 

A team of researchers from the University of Florida, collaborating with CertiK, a Web3 smart contract auditor, have uncovered potential security threats in wireless charging systems. Their research introduces new attack methods, named VoltSchemer, which exploit vulnerabilities in these systems by manipulating power supply voltages.

The VoltSchemer attacks, outlined in a research paper, target weaknesses in wireless charging setups, allowing attackers to disrupt charging devices, tamper with voice assistants, and override safety mechanisms outlined in the Qi standard. Notably, these attacks utilize voltage fluctuations from the power source, requiring no direct modifications to the chargers themselves.

While wireless chargers are generally considered more secure than wired alternatives due to their reliance on near-field magnetic coupling, the researchers argue that they are still susceptible to manipulation. By tampering with power signals, attackers could potentially compromise communication between the charger and the device being charged, leading to malicious actions.

The underlying issue lies in the susceptibility of wireless chargers to electromagnetic interference (EMI) caused by voltage fluctuations. This interference can modulate the power signals transmitted by the charger, enabling attackers to manipulate the magnetic field produced and issue unauthorized commands to connected devices.

In their experiments, the researchers tested the VoltSchemer attacks on nine commercially available wireless chargers, all of which were found to be vulnerable. By inserting a disguised voltage manipulation device, such as a modified power port, between the power adapter and the charger, the researchers successfully executed the attacks.

The consequences of these attacks were significant, with charging smartphones experiencing overheating and devices such as key fobs, USB drives, SSD drives, and NFC cards being permanently damaged or destroyed. The researchers emphasize that the root cause of these vulnerabilities lies in the lack of effective noise suppression in certain frequency bands within wireless charging systems.

Overall, the findings highlight the potential risks associated with wireless charging technologies and underscore the need for improved security measures, especially in high-power systems like electric vehicle (EV) wireless charging.