Initially detected during a phishing campaign that imitated Microsoft 365 login pages, Mamba 2FA functions by relaying MFA credentials through phishing sites, utilizing the Socket.IO JavaScript library to communicate with a backend server. According to Sekoia's report, “At first, these characteristics appeared similar to the Tycoon 2FA phishing-as-a-service platform, but a closer examination revealed that the campaign utilized a previously unknown AiTM phishing kit tracked by Sekoia as Mamba 2FA.”
The infrastructure of Mamba 2FA has been observed targeting Entra ID, third-party single sign-on providers, and consumer Microsoft accounts, with stolen credentials transmitted directly to attackers via Telegram for near-instant access to compromised accounts.
A notable feature of Mamba 2FA is its capacity to adapt to its targets dynamically. For instance, in cases involving enterprise accounts, the phishing page can mirror an organization’s specific branding, including logos and background images, enhancing the believability of the attack. The report noted, “For enterprise accounts, it dynamically reflects the organization’s custom login page branding.”
Mamba 2FA goes beyond simple MFA interception, handling various MFA methods and updating the phishing page based on user interactions. This flexibility makes it an appealing tool for cybercriminals aiming to exploit even the most advanced MFA implementations.
Available on Telegram for $250 per month, Mamba 2FA is accessible to a broad range of attackers. Users can generate phishing links and HTML attachments on demand, with the infrastructure shared among multiple users. Since its active promotion began in March 2024, the kit's ongoing development highlights a persistent threat in the cybersecurity landscape.
Research from Sekoia underscores the kit’s rapid evolution: “The phishing kit and its associated infrastructure have undergone several significant updates.” With its relay servers hosted on commercial proxy services, Mamba 2FA effectively conceals its true infrastructure, thereby minimizing the likelihood of detection.